Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 3/2018

26.10.2017

Physicochemical properties of CuFe2O4 nanoparticles as a gas sensor

verfasst von: Deepshikha Rathore, Supratim Mitra, Rajnish Kurchania, R. K. Pandey

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this report, CuFe2O4 nanoparticles were synthesized using chemical co-precipitation method. The tetragonal phase formation of CuFe2O4 nanoparticles was confirmed by X-ray diffraction technique with its Rietveld refinement data, TEM and SEM analysis. The particle size of CuFe2O4 nanoparticles was found to be 6.4 ± 1 nm using Scherrer formula and TEM analysis. The surface morphology and porosity of CuFe2O4 nanoparticles and its sensing device were analysed using TEM, SEM and AFM images. The CuFe2O4 sensor was tested towards NH3, NO2, SO2 and smoke as change in conductance in terms of impedance spectroscopy with the help of electrochemical workstation. The performance of the sensor was investigated in the form of sensitivity, response and recovery time. The sensitivity was observed in the following order NH3 > NO2 > SO2 > smoke with response and recovery time 8 s and 5 min respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D. Rathore, R. Kurchania, R.K. Pandey, Structural, magnetic and dielectric properties of Ni1 – xZnxFe2O4 (x = 0, 0.5 and 1) nanoparticles synthesized by chemical co-precipitation method. J. Nanosci. Nanotechnol. 13, 1812–1819 (2013)CrossRef D. Rathore, R. Kurchania, R.K. Pandey, Structural, magnetic and dielectric properties of Ni1 – xZnxFe2O4 (x = 0, 0.5 and 1) nanoparticles synthesized by chemical co-precipitation method. J. Nanosci. Nanotechnol. 13, 1812–1819 (2013)CrossRef
2.
Zurück zum Zitat C.E. Rodrıguez, Torres et al., Oxygen-vacancy-induced local ferromagnetism as a driving mechanism in enhancing the magnetic response of ferrites. Phys. Rev. B 89, 104411 (2014)CrossRef C.E. Rodrıguez, Torres et al., Oxygen-vacancy-induced local ferromagnetism as a driving mechanism in enhancing the magnetic response of ferrites. Phys. Rev. B 89, 104411 (2014)CrossRef
3.
Zurück zum Zitat C. Reitz, C. Suchomski, J. Haetge, T. Leichtweiss, Z. Jaglicic, I. Djerdj, T. Brezesinski, Soft-templating synthesis of mesoporous magnetic CuFe2O4 thin films with ordered 3D honeycomb structure and partially inverted nanocrystalline spinel domains. Chem. Commun. 48, 4471–4473 (2012)CrossRef C. Reitz, C. Suchomski, J. Haetge, T. Leichtweiss, Z. Jaglicic, I. Djerdj, T. Brezesinski, Soft-templating synthesis of mesoporous magnetic CuFe2O4 thin films with ordered 3D honeycomb structure and partially inverted nanocrystalline spinel domains. Chem. Commun. 48, 4471–4473 (2012)CrossRef
4.
Zurück zum Zitat S. Tao, F. Gao, X. Liu, O.T. Sørensen, Preparation and gas-sensing properties of CuFe2O4 at reduced temperature. Mater. Sci. Eng. B 77, 172–176 (2000)CrossRef S. Tao, F. Gao, X. Liu, O.T. Sørensen, Preparation and gas-sensing properties of CuFe2O4 at reduced temperature. Mater. Sci. Eng. B 77, 172–176 (2000)CrossRef
5.
Zurück zum Zitat T.G. Nenov, S.P. Yordanov, Ceramic Sensors, Technology and Application (CRC Press, Lancaster, 1996), pp. 20–42 T.G. Nenov, S.P. Yordanov, Ceramic Sensors, Technology and Application (CRC Press, Lancaster, 1996), pp. 20–42
6.
Zurück zum Zitat J.U. Keller, R. Staudt, Gas Adsorption Equilibria: Experimental Methods and Adsorptive Isotherm (Springer, New York, 2006), pp. 17–52 J.U. Keller, R. Staudt, Gas Adsorption Equilibria: Experimental Methods and Adsorptive Isotherm (Springer, New York, 2006), pp. 17–52
7.
Zurück zum Zitat K. Oura et al., Surface Science (Springer, Berlin, 2003), pp. 295–322 K. Oura et al., Surface Science (Springer, Berlin, 2003), pp. 295–322
8.
Zurück zum Zitat M.C. Desjonqueres, D. Spanjaard, Concept in Surface Physics, 2nd edn. (Springer, Berlin, 2012), pp. 162–267 M.C. Desjonqueres, D. Spanjaard, Concept in Surface Physics, 2nd edn. (Springer, Berlin, 2012), pp. 162–267
9.
Zurück zum Zitat S. Singh, B.C. Yadav, R. Prakash, B. Bajaj, J.R. Lee, Synthesis of nanorods and mixed shaped copper ferrite and their applications as liquefied petroleum gas sensor. Appl. Surf. Sci. 257, 10763–10770 (2011)CrossRef S. Singh, B.C. Yadav, R. Prakash, B. Bajaj, J.R. Lee, Synthesis of nanorods and mixed shaped copper ferrite and their applications as liquefied petroleum gas sensor. Appl. Surf. Sci. 257, 10763–10770 (2011)CrossRef
10.
Zurück zum Zitat Z. Shahnavaz, F. Lorestani, W.P. Meng, Y. Alias, Core-shell–CuFe2O4/PPy nanocomposite enzyme-free sensor for detection of glucose. J. Solid State Electrochem. (2015). doi:10.1007/s10008-015-2738-6 Z. Shahnavaz, F. Lorestani, W.P. Meng, Y. Alias, Core-shell–CuFe2O4/PPy nanocomposite enzyme-free sensor for detection of glucose. J. Solid State Electrochem. (2015). doi:10.​1007/​s10008-015-2738-6
11.
Zurück zum Zitat P. Srivastava, A. Garg, Emissions from forest fires in India—as assessment based on MODIS fire and global land cover products. Clim. Change Environ. Sustain. 1, 138–144 (2013)CrossRef P. Srivastava, A. Garg, Emissions from forest fires in India—as assessment based on MODIS fire and global land cover products. Clim. Change Environ. Sustain. 1, 138–144 (2013)CrossRef
12.
Zurück zum Zitat Z. Sun, L. Liu, D.Z. Jia, W. Pan,; Simple synthesis of CuFe2O4 nanoparticles as gas-sensing materials. Sens. Actuators B. 125, 144–148 (2007)CrossRef Z. Sun, L. Liu, D.Z. Jia, W. Pan,; Simple synthesis of CuFe2O4 nanoparticles as gas-sensing materials. Sens. Actuators B. 125, 144–148 (2007)CrossRef
13.
Zurück zum Zitat J.L. Martinez Hurtado, C.R. Lowe, Ammonia-sensitive photonic structures fabricated in nafion membranes by laser ablation. Appl. Mater. Interfaces. 6, 8903–8908 (2014)CrossRef J.L. Martinez Hurtado, C.R. Lowe, Ammonia-sensitive photonic structures fabricated in nafion membranes by laser ablation. Appl. Mater. Interfaces. 6, 8903–8908 (2014)CrossRef
14.
Zurück zum Zitat B.D. Cullity, Elements of X-ray Diffraction, 2nd edn. (Addison Wesley, Morris Cohen, 1956), pp. 284–287 B.D. Cullity, Elements of X-ray Diffraction, 2nd edn. (Addison Wesley, Morris Cohen, 1956), pp. 284–287
15.
Zurück zum Zitat R. Kurchania, D. Rathore, R.K. Pandey, Size dependent strain and nanomagnetism in CoFe2O4 nanoparticles. J Mater. Sci. 26, 9355–9365 (2015) R. Kurchania, D. Rathore, R.K. Pandey, Size dependent strain and nanomagnetism in CoFe2O4 nanoparticles. J Mater. Sci. 26, 9355–9365 (2015)
16.
Zurück zum Zitat B. Timmer, W. Olthuis, A.V.D. Berg, Ammonia sensors and their applications—a review. Sens. Actuators B 107, 666–677 (2005)CrossRef B. Timmer, W. Olthuis, A.V.D. Berg, Ammonia sensors and their applications—a review. Sens. Actuators B 107, 666–677 (2005)CrossRef
17.
Zurück zum Zitat D. Rathore, R. Kurchania, R.K. Pandey, Fabrication of Ni1 – xZnxFe2O4 (x = 0, 0.5 and 1) nanoparticles gas sensor for some reducing gases. Sens. Actuators A 199, 236–240 (2013)CrossRef D. Rathore, R. Kurchania, R.K. Pandey, Fabrication of Ni1 – xZnxFe2O4 (x = 0, 0.5 and 1) nanoparticles gas sensor for some reducing gases. Sens. Actuators A 199, 236–240 (2013)CrossRef
18.
Zurück zum Zitat D. Rathore, R. Kurchania, R.K. Pandey, Gas sensing properties of size varying CoFe2O4 nanoparticles. IEEE Sens. 15, 4961–4966 (2015)CrossRef D. Rathore, R. Kurchania, R.K. Pandey, Gas sensing properties of size varying CoFe2O4 nanoparticles. IEEE Sens. 15, 4961–4966 (2015)CrossRef
19.
Zurück zum Zitat D. Rathore, R. Kurchania, R.K. Pandey, Influence of particle size and temperature on the dielectric properties of CoFe2O4 nanoparticles. Int. J. Min. Metall. Mater. 21, 408–412 (2014)CrossRef D. Rathore, R. Kurchania, R.K. Pandey, Influence of particle size and temperature on the dielectric properties of CoFe2O4 nanoparticles. Int. J. Min. Metall. Mater. 21, 408–412 (2014)CrossRef
20.
Zurück zum Zitat M.A.L. Nobre, S. Lanfredi, Phase transition in sodium lithium niobate polycrystal: an overview based on impedance spectroscopy. J. Phys. Chem. Solids 62, 1999–2006 (2001)CrossRef M.A.L. Nobre, S. Lanfredi, Phase transition in sodium lithium niobate polycrystal: an overview based on impedance spectroscopy. J. Phys. Chem. Solids 62, 1999–2006 (2001)CrossRef
21.
Zurück zum Zitat S. Lanfredi, P.S. Saia, R. Lebullenger, A.C. Hernandes, Electric conductivity and relaxation in fluoride, fluorophosphates and phosphate glasses: analysis by impedance spectroscopy. Solid State Ion. 146, 329–339 (2002)CrossRef S. Lanfredi, P.S. Saia, R. Lebullenger, A.C. Hernandes, Electric conductivity and relaxation in fluoride, fluorophosphates and phosphate glasses: analysis by impedance spectroscopy. Solid State Ion. 146, 329–339 (2002)CrossRef
22.
Zurück zum Zitat K.P. Padmasree, D.K. Kanchan, A.k Kulkarni, Impedance and modulus studies of the solid electrolyte system 20CdI2–80[xAg2O–y(0.7V2O5–0.3B2O3)], where 1 ≤ x/y ≤ 3. Solid State Ion. 177, 475–482 (2006)CrossRef K.P. Padmasree, D.K. Kanchan, A.k Kulkarni, Impedance and modulus studies of the solid electrolyte system 20CdI2–80[xAg2O–y(0.7V2O5–0.3B2O3)], where 1 ≤ x/y ≤ 3. Solid State Ion. 177, 475–482 (2006)CrossRef
23.
Zurück zum Zitat R.J. Grant, M.D. Ingram, L.D.S. Turner, C.A. Vincent, Optimized ionic conductivity in glass. Vitreous silver arsenate iodide (Ag7I4AsO4) electrolytes. J. Phys. Chem. 82, 2838–2844 (1978)CrossRef R.J. Grant, M.D. Ingram, L.D.S. Turner, C.A. Vincent, Optimized ionic conductivity in glass. Vitreous silver arsenate iodide (Ag7I4AsO4) electrolytes. J. Phys. Chem. 82, 2838–2844 (1978)CrossRef
24.
Zurück zum Zitat A.K. Jonscher, Analysis of the alternating current properties of ionic conductors., J. Mater. Sci. 13, 553–562 (1978)CrossRef A.K. Jonscher, Analysis of the alternating current properties of ionic conductors., J. Mater. Sci. 13, 553–562 (1978)CrossRef
25.
Zurück zum Zitat P. Shankar, J.B.B. Rayappan, Gas sensing mechanism of metal oxides: the role of ambient atmosphere, type of semiconductor and gases—a review. Sci. Jet 4, 126 (2015) P. Shankar, J.B.B. Rayappan, Gas sensing mechanism of metal oxides: the role of ambient atmosphere, type of semiconductor and gases—a review. Sci. Jet 4, 126 (2015)
26.
Zurück zum Zitat C.N. Hussain, B. Kharisov, Advanced Environmental Analysis: Applications of Nanomaterials, vol. 2 (Royal Society of Chemistry, Cambridge, 2016), pp. 56–57 C.N. Hussain, B. Kharisov, Advanced Environmental Analysis: Applications of Nanomaterials, vol. 2 (Royal Society of Chemistry, Cambridge, 2016), pp. 56–57
Metadaten
Titel
Physicochemical properties of CuFe2O4 nanoparticles as a gas sensor
verfasst von
Deepshikha Rathore
Supratim Mitra
Rajnish Kurchania
R. K. Pandey
Publikationsdatum
26.10.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 3/2018
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-017-8102-0

Weitere Artikel der Ausgabe 3/2018

Journal of Materials Science: Materials in Electronics 3/2018 Zur Ausgabe