Skip to main content

2017 | OriginalPaper | Buchkapitel

Phytoremediation of Metal- and Salt-Affected Soils

verfasst von : T. J. Purakayastha, Asit Mandal, Savita Kumari

Erschienen in: Bioremediation of Salt Affected Soils: An Indian Perspective

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Modern industrialization, rapid urbanization, and excessive fertilization generate huge amounts of hazardous heavy metals and harmful salts leading to various degrees of soil contamination. The metal contamination, salinity, and sodicity are the prime examples of soil pollution that contribute as potential threat to soil health. The existing conventional technologies to remediate contaminated soil based on physicochemical approaches are highly cost intensive and could upset the biological component consequently productive function of soil in a long run. The magnitude of soil contamination can be minimized through the use of viable technology by means of using suitable plant species; the approach is called phytoremediation. In the recent past, phytoremediation received great attention because of its eco-friendly and economic approaches. Several hyperaccumulator and halophyte plants are known to decontaminate the soil polluted with various hazardous metals and salts. Several heavy metals such as lead, cadmium, copper, manganese, etc. have been commonly chosen as representative metals for which their concentrations in the environment may be used as reliable indices of environmental pollution. Salinity and sodicity are described as major causes of land degradation process that retards plant growth and productivity particularly in the arid and semiarid regions. By virtue of various interactions in the process of phytoremediation and salt removal, the plants can reduce soil contamination to a great extent and re-established the productive potential of the soil. Still, there is demand of research on co-contamination of inorganic and organic contaminants and various salts by means of phytoremediation strategies or plant-rhizosphere microbe interaction.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abdul-Kareem, A. W., & Nazzal, K. E. (2013). Phytoremediation of salt-affected soils at Al-Jazeera northern irrigation project/Nineveh/Iraq. Mesopotamia Journal of Agriculture, 41, 294–298. Abdul-Kareem, A. W., & Nazzal, K. E. (2013). Phytoremediation of salt-affected soils at Al-Jazeera northern irrigation project/Nineveh/Iraq. Mesopotamia Journal of Agriculture, 41, 294–298.
Zurück zum Zitat Abideen, Z., Ansari, R., & Khan, M. A. (2011). Halophytes: Potential source of ligno-cellulosic biomass for ethanol production. Biomass and Bioenergy, 35, 1818–1822. Abideen, Z., Ansari, R., & Khan, M. A. (2011). Halophytes: Potential source of ligno-cellulosic biomass for ethanol production. Biomass and Bioenergy, 35, 1818–1822.
Zurück zum Zitat Adhikari, T., & Ajay, K. (2012). Phytoaccumulation and tolerance of Ricinus Communis L. to nickel. International Journal of Phytoremediation, 14, 481–492.CrossRef Adhikari, T., & Ajay, K. (2012). Phytoaccumulation and tolerance of Ricinus Communis L. to nickel. International Journal of Phytoremediation, 14, 481–492.CrossRef
Zurück zum Zitat Anandhkumar, S. P. (1998). Studies of treated tannery effluent on flower crops and its impact on soil and water quality. M.Sc Thesis, Tamil Nadu Agricultural University, Coimbatore, India. Anandhkumar, S. P. (1998). Studies of treated tannery effluent on flower crops and its impact on soil and water quality. M.Sc Thesis, Tamil Nadu Agricultural University, Coimbatore, India.
Zurück zum Zitat Ashraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59, 206–216.CrossRef Ashraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59, 206–216.CrossRef
Zurück zum Zitat Aslam, R., Bostan, N., Amen, N., Maria, M., & Safdar, W. (2011). A critical review on halophytes: Salt tolerant plants. Journal of Medicinal Plant Research, 5, 7108–7118. Aslam, R., Bostan, N., Amen, N., Maria, M., & Safdar, W. (2011). A critical review on halophytes: Salt tolerant plants. Journal of Medicinal Plant Research, 5, 7108–7118.
Zurück zum Zitat Brunetti, G., Farrag, K., Soler-Rovira, P., Ferrara, M., Nigro, F., & Senesi, N. (2012). The effect of compost and Bacillus licheniformis on the phytoextraction of Cr, Cu, Pb, Zn by three brasicaceae species from contaminated soils in Apulia region, Southern Italy. Geoderma, 170, 322–330.CrossRef Brunetti, G., Farrag, K., Soler-Rovira, P., Ferrara, M., Nigro, F., & Senesi, N. (2012). The effect of compost and Bacillus licheniformis on the phytoextraction of Cr, Cu, Pb, Zn by three brasicaceae species from contaminated soils in Apulia region, Southern Italy. Geoderma, 170, 322–330.CrossRef
Zurück zum Zitat Carillo, P., Annunziata, M. G., Pontecorvo, G., Fuggi, A., & Woodrow, P. (2011). Salinity stress and salt tolerance. In A. K. Shanker & B. Venkateswarlu (Eds.), Abiotic stress in plants—Mechanisms and adaptations (pp. 21–38). Rijeka, Croatia: In Tech. Carillo, P., Annunziata, M. G., Pontecorvo, G., Fuggi, A., & Woodrow, P. (2011). Salinity stress and salt tolerance. In A. K. Shanker & B. Venkateswarlu (Eds.), Abiotic stress in plants—Mechanisms and adaptations (pp. 21–38). Rijeka, Croatia: In Tech.
Zurück zum Zitat Dajic, Z. (2006). Salt stress. In K. V. Madhava Rao, A. S. Raghavendra, & K. Janardhan Reddy (Eds.), Physiology and molecular biology of stress tolerance in plant (pp. 41–99). Amsterdam: Springer.CrossRef Dajic, Z. (2006). Salt stress. In K. V. Madhava Rao, A. S. Raghavendra, & K. Janardhan Reddy (Eds.), Physiology and molecular biology of stress tolerance in plant (pp. 41–99). Amsterdam: Springer.CrossRef
Zurück zum Zitat Dansereau, P. (1957). Biogeography: An ecological perspective. New York: Ronald Press. Dansereau, P. (1957). Biogeography: An ecological perspective. New York: Ronald Press.
Zurück zum Zitat Davenport, R., James, R. A., Zakrisson-Plogander, A., Tester, M., & Munns, R. (2005). Control of sodium transport in durum wheat. Plant Physiology, 137, 807–818.CrossRef Davenport, R., James, R. A., Zakrisson-Plogander, A., Tester, M., & Munns, R. (2005). Control of sodium transport in durum wheat. Plant Physiology, 137, 807–818.CrossRef
Zurück zum Zitat Dheri, G. S., Brar, M. S., & Malhi, S. S. (2007). Comparative phytoremediation of chromium contaminated soils by Fenugreek, Spinach, and Raya. Communications in Soil Science and Plant Analysis, 38, 1655–1672.CrossRef Dheri, G. S., Brar, M. S., & Malhi, S. S. (2007). Comparative phytoremediation of chromium contaminated soils by Fenugreek, Spinach, and Raya. Communications in Soil Science and Plant Analysis, 38, 1655–1672.CrossRef
Zurück zum Zitat Flowers, T. J., & Hajibagheri, M. A. (2001). Salinity tolerance in Hordeum vulgare: Ion concentrations in root cells of cultivars differing in salt tolerance. Plant and Soil, 231, 1–9.CrossRef Flowers, T. J., & Hajibagheri, M. A. (2001). Salinity tolerance in Hordeum vulgare: Ion concentrations in root cells of cultivars differing in salt tolerance. Plant and Soil, 231, 1–9.CrossRef
Zurück zum Zitat Glenn, E. P., Anday, T., Chaturvedi, R., Martinez-Garcia, R., Pearlstein, S., Soliz, D., et al. (2013). Three halophytes for saline-water agriculture: an oilseed, a forage and a grain crop. Environmental and Experimental Botany, 92, 110–121.CrossRef Glenn, E. P., Anday, T., Chaturvedi, R., Martinez-Garcia, R., Pearlstein, S., Soliz, D., et al. (2013). Three halophytes for saline-water agriculture: an oilseed, a forage and a grain crop. Environmental and Experimental Botany, 92, 110–121.CrossRef
Zurück zum Zitat Greenway, H., & Munns, R. (1980). Mechanisms of salt tolerance in non halophytes. Annual Review of Plant Physiology, 31, 149–190.CrossRef Greenway, H., & Munns, R. (1980). Mechanisms of salt tolerance in non halophytes. Annual Review of Plant Physiology, 31, 149–190.CrossRef
Zurück zum Zitat Haan, S. D., & Lubbers, J. (1983). Microelements in potatoes under normal conditions, and as affected by micro-elements in municipal waste compost, sewage sludge and degraded materials from harbours. Rapport Institute Voor Bodemvruchtbaarheld, 83, 22. Haan, S. D., & Lubbers, J. (1983). Microelements in potatoes under normal conditions, and as affected by micro-elements in municipal waste compost, sewage sludge and degraded materials from harbours. Rapport Institute Voor Bodemvruchtbaarheld, 83, 22.
Zurück zum Zitat Hasanuzzaman, M., Nahar, K., & Fujita, M. (2013). Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In P. Ahmad, M. M. Azooz, & M. N. V. Prasad (Eds.), Ecophysiology and responses of plants under salt stress (pp. 25–87). New York: Springer.CrossRef Hasanuzzaman, M., Nahar, K., & Fujita, M. (2013). Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In P. Ahmad, M. M. Azooz, & M. N. V. Prasad (Eds.), Ecophysiology and responses of plants under salt stress (pp. 25–87). New York: Springer.CrossRef
Zurück zum Zitat Hasanuzzaman, M., Nahar, K., Alam, M. M., Bhowmik, P. C., Hossain, M. A., Rahman, M. M., et al. (2014). Potential use of halophytes to remediate saline soils. BioMed Research International. doi:10.1155/2014/589341. Hasanuzzaman, M., Nahar, K., Alam, M. M., Bhowmik, P. C., Hossain, M. A., Rahman, M. M., et al. (2014). Potential use of halophytes to remediate saline soils. BioMed Research International. doi:10.​1155/​2014/​589341.
Zurück zum Zitat Jankong, P., Visoottiviseth, P., & Khokiattiwong, S. (2007). Enhanced phytoremediation of arsenic contaminated land. Chemosphere, 68, 1906–1912.CrossRef Jankong, P., Visoottiviseth, P., & Khokiattiwong, S. (2007). Enhanced phytoremediation of arsenic contaminated land. Chemosphere, 68, 1906–1912.CrossRef
Zurück zum Zitat Khan, M. S., Zaidi, A., Wani, P. A., & Oves, M. (2009). Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environmental Chemistry Letters, 7, 1–19.CrossRef Khan, M. S., Zaidi, A., Wani, P. A., & Oves, M. (2009). Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environmental Chemistry Letters, 7, 1–19.CrossRef
Zurück zum Zitat Lee, G., Carrow, R. N., Duncan, R. R., Eiteman, M. A., & Rieger, M. W. (2008). Synthesis of organic osmolytes and salt tolerance mechanisms in Paspalum vaginatum. Environmental and Experimental Botany, 63, 19–27.CrossRef Lee, G., Carrow, R. N., Duncan, R. R., Eiteman, M. A., & Rieger, M. W. (2008). Synthesis of organic osmolytes and salt tolerance mechanisms in Paspalum vaginatum. Environmental and Experimental Botany, 63, 19–27.CrossRef
Zurück zum Zitat Li, K., & Ramakrishna, W. (2011). Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth. Journal of Hazardous Materials, 189, 531–539.CrossRef Li, K., & Ramakrishna, W. (2011). Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth. Journal of Hazardous Materials, 189, 531–539.CrossRef
Zurück zum Zitat Lokhande, V. H., Nikam, T. D., & Suprasanna, P. (2009). Sesuvium portulacastrum (L.), a promising halophyte: Cultivation, utilization and distribution in India. Genetic Resources and Crop Evolution, 56, 741–747.CrossRef Lokhande, V. H., Nikam, T. D., & Suprasanna, P. (2009). Sesuvium portulacastrum (L.), a promising halophyte: Cultivation, utilization and distribution in India. Genetic Resources and Crop Evolution, 56, 741–747.CrossRef
Zurück zum Zitat Ma, Y., Rajkumar, M., & Freitas, H. (2009a). Isolation and characterization of Ni mobilizing PGPB from serpentine soils and their potential in promoting plant growth and Ni accumulation by Brassica spp. Chemosphere, 75, 719–725.CrossRef Ma, Y., Rajkumar, M., & Freitas, H. (2009a). Isolation and characterization of Ni mobilizing PGPB from serpentine soils and their potential in promoting plant growth and Ni accumulation by Brassica spp. Chemosphere, 75, 719–725.CrossRef
Zurück zum Zitat Ma, L. Q., Komar, K. M., Tu, C., Zhang, W. H., Cai, Y., & Kennelley, E. D. (2001). A fern that hyper accumulates arsenic: A hardy, versatile, fast-growing plant helps to remove arsenic from contaminated soils. Nature, 409, 579.CrossRef Ma, L. Q., Komar, K. M., Tu, C., Zhang, W. H., Cai, Y., & Kennelley, E. D. (2001). A fern that hyper accumulates arsenic: A hardy, versatile, fast-growing plant helps to remove arsenic from contaminated soils. Nature, 409, 579.CrossRef
Zurück zum Zitat Ma, Y., Rajkumar, M., & Freitas, H. (2009b). Improvement of plant growth and nickel uptake by nickel resistant-plant-growth promoting bacteria. Journal of Hazardous Materials, 166, 1154–1161.CrossRef Ma, Y., Rajkumar, M., & Freitas, H. (2009b). Improvement of plant growth and nickel uptake by nickel resistant-plant-growth promoting bacteria. Journal of Hazardous Materials, 166, 1154–1161.CrossRef
Zurück zum Zitat Ma, Y., Rajkumar, M., Vicente, J. A., & Freitas, H. (2011). Inoculation of Ni resistant plant growth promoting bacterium Psychrobacter sp. strain SRS8 for the improvement of nickel phytoextraction by energy crops. International Journal of Phytoremediation, 13, 126–139.CrossRef Ma, Y., Rajkumar, M., Vicente, J. A., & Freitas, H. (2011). Inoculation of Ni resistant plant growth promoting bacterium Psychrobacter sp. strain SRS8 for the improvement of nickel phytoextraction by energy crops. International Journal of Phytoremediation, 13, 126–139.CrossRef
Zurück zum Zitat Magwa, M. L., Gundidza, M., Gweru, N., & Humphrey, G. (2006). Chemical composition and biological activities of essential oil from the leaves of Sesuvium portulacastrum. Journal of Ethnopharmacolgy, 103, 85–89.CrossRef Magwa, M. L., Gundidza, M., Gweru, N., & Humphrey, G. (2006). Chemical composition and biological activities of essential oil from the leaves of Sesuvium portulacastrum. Journal of Ethnopharmacolgy, 103, 85–89.CrossRef
Zurück zum Zitat Mandal, A., Purakayastha, T. J., Patra, A. K., & Sanyal, S. K. (2012a). Phytoremediation of arsenic contaminated soils by Pteris vittata L. I. Influence of phosphatic fertilizers and repeated harvests. International Journal of Phytoremediation, 14, 978–995.CrossRef Mandal, A., Purakayastha, T. J., Patra, A. K., & Sanyal, S. K. (2012a). Phytoremediation of arsenic contaminated soils by Pteris vittata L. I. Influence of phosphatic fertilizers and repeated harvests. International Journal of Phytoremediation, 14, 978–995.CrossRef
Zurück zum Zitat Mandal, A., Purakayastha, T. J., Patra, A. K., & Sanyal, S. K. (2012b). Phytoremediation of arsenic contaminated soils by Pteris vittata L. I. Effect on arsenic uptake and rice yield. International Journal of Phytoremediation, 14, 621–628.CrossRef Mandal, A., Purakayastha, T. J., Patra, A. K., & Sanyal, S. K. (2012b). Phytoremediation of arsenic contaminated soils by Pteris vittata L. I. Effect on arsenic uptake and rice yield. International Journal of Phytoremediation, 14, 621–628.CrossRef
Zurück zum Zitat Mandal, A., Purakayastha, T. J., & Patra, A. K. (2014). Phytoextraction of arsenic contaminated soil by Chinese brake fern (Pteris vittata): Effect on soil microbiological activities. Biology and Fertility of Soils, 50, 1247–1252.CrossRef Mandal, A., Purakayastha, T. J., & Patra, A. K. (2014). Phytoextraction of arsenic contaminated soil by Chinese brake fern (Pteris vittata): Effect on soil microbiological activities. Biology and Fertility of Soils, 50, 1247–1252.CrossRef
Zurück zum Zitat Mani, D., Sharma, B., & Kumar, C. (2007). Phytoaccumulation, interaction, toxicity and remediation of cadmium from Helianthus annuus L. (sunflower). Bulletin of Environmental Contamination and Toxicology, 79, 71–79.CrossRef Mani, D., Sharma, B., & Kumar, C. (2007). Phytoaccumulation, interaction, toxicity and remediation of cadmium from Helianthus annuus L. (sunflower). Bulletin of Environmental Contamination and Toxicology, 79, 71–79.CrossRef
Zurück zum Zitat Marcum, K. B., & Murdoch, C. L. (1992). Salt tolerance of the coastal salt marsh grass, Sporobolus virginicus (L.) Kunth. New Phytologist, 120, 281–288.CrossRef Marcum, K. B., & Murdoch, C. L. (1992). Salt tolerance of the coastal salt marsh grass, Sporobolus virginicus (L.) Kunth. New Phytologist, 120, 281–288.CrossRef
Zurück zum Zitat McGrath, S. P., Chaudri, A. M., & Giller, K. E. (1995). Long-term effects of metals in sewage sludge on soils, microorganisms and plants. Journal of Industrial Microbiology, 14, 94–104.CrossRef McGrath, S. P., Chaudri, A. M., & Giller, K. E. (1995). Long-term effects of metals in sewage sludge on soils, microorganisms and plants. Journal of Industrial Microbiology, 14, 94–104.CrossRef
Zurück zum Zitat Mukhopadhyay, S., & Maiti, S. K. (2009). Phytoremediation of metal mine waste. Applied Ecology and Environmental Research, 8, 207–222. Mukhopadhyay, S., & Maiti, S. K. (2009). Phytoremediation of metal mine waste. Applied Ecology and Environmental Research, 8, 207–222.
Zurück zum Zitat Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell and Environment, 25, 239–250.CrossRef Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell and Environment, 25, 239–250.CrossRef
Zurück zum Zitat Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681.CrossRef Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681.CrossRef
Zurück zum Zitat Nouri, J., Lorestani, B., Yousefi, N., Khorasani, N., Hasani, A. H., Seif, F., et al. (2011). Phytoremediation potential of native plants grown in the vicinity of Ahangaran lead-zinc mine (Hamedan, Iran). Environmental and Earth Science, 62, 639–644.CrossRef Nouri, J., Lorestani, B., Yousefi, N., Khorasani, N., Hasani, A. H., Seif, F., et al. (2011). Phytoremediation potential of native plants grown in the vicinity of Ahangaran lead-zinc mine (Hamedan, Iran). Environmental and Earth Science, 62, 639–644.CrossRef
Zurück zum Zitat Parida, A. K., & Das, A. B. (2005). Salt tolerance and salinity effects on plants: A review. Ecotoxicology and Environment Safety, 60, 324–349.CrossRef Parida, A. K., & Das, A. B. (2005). Salt tolerance and salinity effects on plants: A review. Ecotoxicology and Environment Safety, 60, 324–349.CrossRef
Zurück zum Zitat Purakayastha, T. J., & Chhonkar, P. K. (2010). Phytoremediation of heavy metal contaminated soil. In I. Sherameti & A. Varma (Eds.), Soil heavy metals (Vol. 19, pp. 389–430). Heidelberg, Germany: Springer.CrossRef Purakayastha, T. J., & Chhonkar, P. K. (2010). Phytoremediation of heavy metal contaminated soil. In I. Sherameti & A. Varma (Eds.), Soil heavy metals (Vol. 19, pp. 389–430). Heidelberg, Germany: Springer.CrossRef
Zurück zum Zitat Purakayastha, T. J., Thulasi, V., Bhadraray, S., Chhonkar, P. K., Adhikari, P. P., & Suribabu, K. (2008). Phytoextraction of zinc, copper, nickel and lead from a contaminated soil by different species of Brassica. International Journal of Phytoremediation, 10, 63–74.CrossRef Purakayastha, T. J., Thulasi, V., Bhadraray, S., Chhonkar, P. K., Adhikari, P. P., & Suribabu, K. (2008). Phytoextraction of zinc, copper, nickel and lead from a contaminated soil by different species of Brassica. International Journal of Phytoremediation, 10, 63–74.CrossRef
Zurück zum Zitat Qadir, M., & Oster, J. (2002). Vegetative bioremediation of calcareous sodic soils: History, mechanisms, and evaluation. Irrigation Science, 21, 91–101.CrossRef Qadir, M., & Oster, J. (2002). Vegetative bioremediation of calcareous sodic soils: History, mechanisms, and evaluation. Irrigation Science, 21, 91–101.CrossRef
Zurück zum Zitat Qadir, M., & Schubert, S. (2002). Degradation processes and nutrient constraints in sodic soils. Land Degradation and Development, 13, 275–294.CrossRef Qadir, M., & Schubert, S. (2002). Degradation processes and nutrient constraints in sodic soils. Land Degradation and Development, 13, 275–294.CrossRef
Zurück zum Zitat Qadir, M., Qureshi, R. H., & Ahmad, N. (1997). Nutrient availability in a calcareous saline-sodic soil during vegetative bioremediation. Arid Soil Research and Rehabilitation, 11, 343–352.CrossRef Qadir, M., Qureshi, R. H., & Ahmad, N. (1997). Nutrient availability in a calcareous saline-sodic soil during vegetative bioremediation. Arid Soil Research and Rehabilitation, 11, 343–352.CrossRef
Zurück zum Zitat Qadir, M., Ghafoor, A., & Murtaza, G. (2000). Amelioration strategies for saline soils: A review. Land Degradation and Development, 11, 501–521.CrossRef Qadir, M., Ghafoor, A., & Murtaza, G. (2000). Amelioration strategies for saline soils: A review. Land Degradation and Development, 11, 501–521.CrossRef
Zurück zum Zitat Qadir, M., Qureshi, R. H., & Ahmad, N. (2002). Amelioration of calcareous saline sodic soils through phytoremediation and chemical strategies. Soil Use and Management, 18, 381–385.CrossRef Qadir, M., Qureshi, R. H., & Ahmad, N. (2002). Amelioration of calcareous saline sodic soils through phytoremediation and chemical strategies. Soil Use and Management, 18, 381–385.CrossRef
Zurück zum Zitat Qadir, M., Noble, A. D., Oster, J. D., Schubert, S., & Ghafoor, A. (2005). Driving forces for sodium removal during phytoremediation of calcareous sodic and saline-sodic soils: A review. Soil Use and Management, 21, 173–180.CrossRef Qadir, M., Noble, A. D., Oster, J. D., Schubert, S., & Ghafoor, A. (2005). Driving forces for sodium removal during phytoremediation of calcareous sodic and saline-sodic soils: A review. Soil Use and Management, 21, 173–180.CrossRef
Zurück zum Zitat Qadir, M., Oster, J. D., Schubert, S., & Murtaza, G. (2006). Vegetative bioremediation of sodic and saline-sodic soils for productivity enhancement and environment conservation. In M. Ozturk, Y. Waisel, M. A. Khan, & G. Gork (Eds.), Biosaline agriculture and salinity tolerance in plants (pp. 137–146). Basel: Birkhauser Switzerland. Qadir, M., Oster, J. D., Schubert, S., & Murtaza, G. (2006). Vegetative bioremediation of sodic and saline-sodic soils for productivity enhancement and environment conservation. In M. Ozturk, Y. Waisel, M. A. Khan, & G. Gork (Eds.), Biosaline agriculture and salinity tolerance in plants (pp. 137–146). Basel: Birkhauser Switzerland.
Zurück zum Zitat Rabhi, M., Hafsi, C., Lakhdar, A., Hajji, S., Barhoumi, Z., Hamrouni, M. H., et al. (2009). Evaluation of the capacity of three halophytes to desalinize their rhizosphere as grown on saline soils under nonleaching conditions. African Journal of Ecology, 47, 463–468.CrossRef Rabhi, M., Hafsi, C., Lakhdar, A., Hajji, S., Barhoumi, Z., Hamrouni, M. H., et al. (2009). Evaluation of the capacity of three halophytes to desalinize their rhizosphere as grown on saline soils under nonleaching conditions. African Journal of Ecology, 47, 463–468.CrossRef
Zurück zum Zitat Rabhi, M., Ferchichi, S., Jouini, J., Hamrouni, M. H., Koyro, H. W., Ranieri, A., et al. (2010). Phytodesalination of a salt-affected soil with the halophyte Sesuvium portulacastrum L. to arrange in advance the requirements for the successful growth of a glycophytic crop. Bioresource Technology, 101, 6822–6828.CrossRef Rabhi, M., Ferchichi, S., Jouini, J., Hamrouni, M. H., Koyro, H. W., Ranieri, A., et al. (2010). Phytodesalination of a salt-affected soil with the halophyte Sesuvium portulacastrum L. to arrange in advance the requirements for the successful growth of a glycophytic crop. Bioresource Technology, 101, 6822–6828.CrossRef
Zurück zum Zitat Ramana, S., Biswas, A. K., Ajay, & Subba Rao, A. (2008a). Phytoextraction of lead by marigold and chrysanthemum. Indian Journal of Plant Physiology, 13, 297–299. Ramana, S., Biswas, A. K., Ajay, & Subba Rao, A. (2008a). Phytoextraction of lead by marigold and chrysanthemum. Indian Journal of Plant Physiology, 13, 297–299.
Zurück zum Zitat Ramana, S., Biswas, A. K., Ajay, & Subba Rao, A. (2008b). Tolerance and bioaccumulation of cadmium and lead by gladiolus. National Academy Science Letters, 31, 327–332. Ramana, S., Biswas, A. K., Ajay, & Subba Rao, A. (2008b). Tolerance and bioaccumulation of cadmium and lead by gladiolus. National Academy Science Letters, 31, 327332.
Zurück zum Zitat Ramana, S., Biswas, A. K., Ajay, & Subba Rao, A. (2009). Phytoremediation of cadmium contaminated soils by marigold and chrysanthemum. National Academy Science Letters, 32, 333–336. Ramana, S., Biswas, A. K., Ajay, & Subba Rao, A. (2009). Phytoremediation of cadmium contaminated soils by marigold and chrysanthemum. National Academy Science Letters, 32, 333336.
Zurück zum Zitat Ramana, S., Biswas, A. K., Ajay, Singh, A. B., & Ahirwar, N. (2012a). Phytoremediation of chromium by tuberose. National Academy Science Letters, 35, 71–73. Ramana, S., Biswas, A. K., Ajay, Singh, A. B., & Ahirwar, N. (2012a). Phytoremediation of chromium by tuberose. National Academy Science Letters, 35, 7173.
Zurück zum Zitat Ramana, S., Biswas, A. K., Singh, A. B., Ajay, Naveen Kumar, P., Ahirwar, N. K., Behera, S. K., & Subba Rao, A. (2012b). Phytoremediation of cadmium contaminated soils by tuberose. Indian Journal of Plant Physiology, 17, 61–64. Ramana, S., Biswas, A. K., Singh, A. B., Ajay, Naveen Kumar, P., Ahirwar, N. K., Behera, S. K., & Subba Rao, A. (2012b). Phytoremediation of cadmium contaminated soils by tuberose. Indian Journal of Plant Physiology, 17, 61–64.
Zurück zum Zitat Ramani, B., Reeck, T., Debez, A., Stelzer, R., Huchzermeyer, B., Schmidt, A., et al. (2006). Aster tripolium L. and Sesuvium portulacastrum L.: Two halophytes, two strategies to survive in saline habitats. Plant Physiology and Biochemistry, 44, 395–408.CrossRef Ramani, B., Reeck, T., Debez, A., Stelzer, R., Huchzermeyer, B., Schmidt, A., et al. (2006). Aster tripolium L. and Sesuvium portulacastrum L.: Two halophytes, two strategies to survive in saline habitats. Plant Physiology and Biochemistry, 44, 395–408.CrossRef
Zurück zum Zitat Ramasamy, K. (1997). Tannery effluent related pollution on land and water ecosystems. Proceedings of Extended Abstracts from the International Conference on the Biogeochemistry of Trace Elements, California, USA, 771–772. Ramasamy, K. (1997). Tannery effluent related pollution on land and water ecosystems. Proceedings of Extended Abstracts from the International Conference on the Biogeochemistry of Trace Elements, California, USA, 771–772.
Zurück zum Zitat Rasouli, F., Kiani Pouya, A., & Karimian, N. (2013). Wheat yield and physicochemical properties of a sodic soil from semi-arid area of Iran as affected by applied gypsum. Geoderma, 193–194, 246–255.CrossRef Rasouli, F., Kiani Pouya, A., & Karimian, N. (2013). Wheat yield and physicochemical properties of a sodic soil from semi-arid area of Iran as affected by applied gypsum. Geoderma, 193–194, 246–255.CrossRef
Zurück zum Zitat Rattan, R. K., Datta, S. P., Chhonkar, P. K., Suribabu, K., & Singh, A. K. (2005). Long-term impact of irrigation with sewage effluents on heavy metal contents in soils, crops and ground water – A case study. Agriculture, Ecosystems and Environment, 109, 210–322.CrossRef Rattan, R. K., Datta, S. P., Chhonkar, P. K., Suribabu, K., & Singh, A. K. (2005). Long-term impact of irrigation with sewage effluents on heavy metal contents in soils, crops and ground water – A case study. Agriculture, Ecosystems and Environment, 109, 210–322.CrossRef
Zurück zum Zitat Ravindran, K. C., Venkatesan, K., Balakrishnan, V., Chellappan, K. P., & Balasubramanian, T. (2007). Restoration of saline land by halophytes for Indian soils. Soil Biology and Biochemistry, 39, 2661–2664.CrossRef Ravindran, K. C., Venkatesan, K., Balakrishnan, V., Chellappan, K. P., & Balasubramanian, T. (2007). Restoration of saline land by halophytes for Indian soils. Soil Biology and Biochemistry, 39, 2661–2664.CrossRef
Zurück zum Zitat Salt, D. E., Smith, R. D., & Raskin, I. (1998). Phytoremediation. Annual Review of Plant Physiology and Plant Molecular Biology, 49, 643–668.CrossRef Salt, D. E., Smith, R. D., & Raskin, I. (1998). Phytoremediation. Annual Review of Plant Physiology and Plant Molecular Biology, 49, 643–668.CrossRef
Zurück zum Zitat Schimper, A. F. W. (1903). Plant geography upon a physiological basis. Oxford: Clarendon.CrossRef Schimper, A. F. W. (1903). Plant geography upon a physiological basis. Oxford: Clarendon.CrossRef
Zurück zum Zitat Setkit, K., Kumsopa, A., Wongthanate, J., & Prapagdee, B. (2014). Enhanced cadmium (Cd) phytoextraction from contaminated soil using Cd-resistant bacterium. Environmental Asia, 7, 89–94. Setkit, K., Kumsopa, A., Wongthanate, J., & Prapagdee, B. (2014). Enhanced cadmium (Cd) phytoextraction from contaminated soil using Cd-resistant bacterium. Environmental Asia, 7, 89–94.
Zurück zum Zitat Shanker, A. K., Ravichandran, V., & Pathmanabhan, G. (2005). Phytoaccumulation of chromium by some multipurpose tree seedlings. Agroforestry Systems, 64, 83–87.CrossRef Shanker, A. K., Ravichandran, V., & Pathmanabhan, G. (2005). Phytoaccumulation of chromium by some multipurpose tree seedlings. Agroforestry Systems, 64, 83–87.CrossRef
Zurück zum Zitat Shelef, O., Gross, A., & Rachmilevitch, S. (2012). The use of Brassica indica for salt phytoremediation in constructed wetlands. Water Research, 46, 3967–3976.CrossRef Shelef, O., Gross, A., & Rachmilevitch, S. (2012). The use of Brassica indica for salt phytoremediation in constructed wetlands. Water Research, 46, 3967–3976.CrossRef
Zurück zum Zitat Shen, H., Christie, P., & Li, X. (2006). Uptake of zinc, cadmium and phosphorus by arbuscular mycorrhizal maize (Zea mays L.) from a low available phosphorus calcareous soil spiked with zinc and cadmium. Environmental Geochemistry and Health, 28, 111–119.CrossRef Shen, H., Christie, P., & Li, X. (2006). Uptake of zinc, cadmium and phosphorus by arbuscular mycorrhizal maize (Zea mays L.) from a low available phosphorus calcareous soil spiked with zinc and cadmium. Environmental Geochemistry and Health, 28, 111–119.CrossRef
Zurück zum Zitat Silveira, J. A. G., Araujo, S. A. M., Lima, J. P. M. S., & Viegas, R. A. (2009). Roots and leaves display contrasting osmotic adjustment mechanisms in response to NaCl-salinity in Atriplex nummularia. Environmental and Experimental Botany, 66, 1–8. Silveira, J. A. G., Araujo, S. A. M., Lima, J. P. M. S., & Viegas, R. A. (2009). Roots and leaves display contrasting osmotic adjustment mechanisms in response to NaCl-salinity in Atriplex nummularia. Environmental and Experimental Botany, 66, 1–8.
Zurück zum Zitat Sinha, R. K., Valani, D., Sinha, S., Singh, S., & Herat, S. (2009). Bioremediation of contaminated sites: A low-cost nature’s biotechnology for environment clean up by versatile microbes, plants and earthworms. Solid waste management and environmental remediation. ISBN: 978-1-60741-761-3. Sinha, R. K., Valani, D., Sinha, S., Singh, S., & Herat, S. (2009). Bioremediation of contaminated sites: A low-cost nature’s biotechnology for environment clean up by versatile microbes, plants and earthworms. Solid waste management and environmental remediation. ISBN: 978-1-60741-761-3.
Zurück zum Zitat Stocker, O. (1928). Das Halophytenproblem. In K. V. Frisch, R. Goldschmidt, W. Ruhland, & H. Winterstein (Eds.), Ergebnisse der Biologie (pp. 266–353). Berlin, Germany: Springer (German). Stocker, O. (1928). Das Halophytenproblem. In K. V. Frisch, R. Goldschmidt, W. Ruhland, & H. Winterstein (Eds.), Ergebnisse der Biologie (pp. 266–353). Berlin, Germany: Springer (German).
Zurück zum Zitat Sun, Y. B., Zhou, Q. X., An, J., Liu, W. T., & Liu, R. (2009). Chelator-enhanced phytoextraction of heavy metals from contaminated soil irrigated by industrial wastewater with the hyperaccumulator plant (Sedum alfredii Hance). Geoderma, 150, 106–112. Sun, Y. B., Zhou, Q. X., An, J., Liu, W. T., & Liu, R. (2009). Chelator-enhanced phytoextraction of heavy metals from contaminated soil irrigated by industrial wastewater with the hyperaccumulator plant (Sedum alfredii Hance). Geoderma, 150, 106–112.
Zurück zum Zitat Tester, M., & Davenport, R. (2003). Na+ tolerance and Na+ transport in higher plants. Annals of Botany, 91, 503–527.CrossRef Tester, M., & Davenport, R. (2003). Na+ tolerance and Na+ transport in higher plants. Annals of Botany, 91, 503–527.CrossRef
Zurück zum Zitat Vassilev, A., Schwitzguébel, J. P., Thewys, T., van der Lelie, D., & Vangronsveld, J. (2004). The use of plants for remediation of metal contaminated soils. Scientific World Journal, 4, 9–34.CrossRef Vassilev, A., Schwitzguébel, J. P., Thewys, T., van der Lelie, D., & Vangronsveld, J. (2004). The use of plants for remediation of metal contaminated soils. Scientific World Journal, 4, 9–34.CrossRef
Zurück zum Zitat Vessey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 255, 571–586.CrossRef Vessey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 255, 571–586.CrossRef
Zurück zum Zitat Vivas, A., Vorosm, A., Biro, B., Barea, J. M., Ruiz-Lozano, J. M., & Azcón, R. (2003). Beneficial effects of indigenous Cd-tolerant and Cd-sensitive Glomus mosseae associated with a Cd-adapted strain of Brevibacillus sp. in improving plant tolerance to Cd contamination. Applied Soil Ecology, 24, 177–186.CrossRef Vivas, A., Vorosm, A., Biro, B., Barea, J. M., Ruiz-Lozano, J. M., & Azcón, R. (2003). Beneficial effects of indigenous Cd-tolerant and Cd-sensitive Glomus mosseae associated with a Cd-adapted strain of Brevibacillus sp. in improving plant tolerance to Cd contamination. Applied Soil Ecology, 24, 177–186.CrossRef
Zurück zum Zitat Waldner, C., Checkley, S., Blakley, B., Pollock, C., & Mitchell, B. (2002). Managing lead exposure and toxicity in cow-calf herds to minimize the potential for food residues. Journal of Veterinary Diagnostic Investigation, 14, 481–486.CrossRef Waldner, C., Checkley, S., Blakley, B., Pollock, C., & Mitchell, B. (2002). Managing lead exposure and toxicity in cow-calf herds to minimize the potential for food residues. Journal of Veterinary Diagnostic Investigation, 14, 481–486.CrossRef
Zurück zum Zitat Walker, D. J., Lutts, S., Sánchez-García, M., & Correal, E. (2014). Atriplex halimus L.: Its biology and uses. Journal of Arid Environments, 100–101, 111–112.CrossRef Walker, D. J., Lutts, S., Sánchez-García, M., & Correal, E. (2014). Atriplex halimus L.: Its biology and uses. Journal of Arid Environments, 100–101, 111–112.CrossRef
Zurück zum Zitat Walter, H. (1961). Salinity problems in the acid zones: The adaptations of plants to saline soils. The adaptations of plants to saline soils. Arid Zones Research, 14, 65–68. Walter, H. (1961). Salinity problems in the acid zones: The adaptations of plants to saline soils. The adaptations of plants to saline soils. Arid Zones Research, 14, 65–68.
Zurück zum Zitat White, P. J., & Broadley, M. R. (2001). Chloride in soils and its uptake and movement within the plant: A review. Annals of Botany, 88, 967–988.CrossRef White, P. J., & Broadley, M. R. (2001). Chloride in soils and its uptake and movement within the plant: A review. Annals of Botany, 88, 967–988.CrossRef
Zurück zum Zitat Wu, S. S. (2009). Enhanced phytoremediation of salt-impacted soils using plant growth-promoting rhizobacteria (PGPR). PhD thesis, University of Waterloo. Wu, S. S. (2009). Enhanced phytoremediation of salt-impacted soils using plant growth-promoting rhizobacteria (PGPR). PhD thesis, University of Waterloo.
Zurück zum Zitat Wu, S. C., Cao, Z. H., Li, Z. G., Cheung, K. C., & Wong, M. H. (2005). Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma, 125, 155–166.CrossRef Wu, S. C., Cao, Z. H., Li, Z. G., Cheung, K. C., & Wong, M. H. (2005). Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma, 125, 155–166.CrossRef
Zurück zum Zitat Yao, R., Yang, J., Gao, P., Zhang, J., & Jin, W. (2013). Determining minimum data set for soil quality assessment of typical salt affected farmland in the coastal reclamation area. Soil and Tillage Research, 128, 137–148.CrossRef Yao, R., Yang, J., Gao, P., Zhang, J., & Jin, W. (2013). Determining minimum data set for soil quality assessment of typical salt affected farmland in the coastal reclamation area. Soil and Tillage Research, 128, 137–148.CrossRef
Zurück zum Zitat Yoon, J., Cao, X., Zhou, Q., & Ma, L. (2006). Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the Total Environment, 368, 456–464.CrossRef Yoon, J., Cao, X., Zhou, Q., & Ma, L. (2006). Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the Total Environment, 368, 456–464.CrossRef
Zurück zum Zitat Zhu, J. K. (2001). Plant salt tolerance. Trends in Plant Science, 6, 66–71.CrossRef Zhu, J. K. (2001). Plant salt tolerance. Trends in Plant Science, 6, 66–71.CrossRef
Metadaten
Titel
Phytoremediation of Metal- and Salt-Affected Soils
verfasst von
T. J. Purakayastha
Asit Mandal
Savita Kumari
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-48257-6_11