Skip to main content

2014 | OriginalPaper | Buchkapitel

Piecewise Linearity and Spectroscopic Properties from Koopmans-Compliant Functionals

verfasst von : Ismaila Dabo, Andrea Ferretti, Nicola Marzari

Erschienen in: First Principles Approaches to Spectroscopic Properties of Complex Materials

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Density-functional theory is an extremely powerful and widely used tool for quantum simulations. It reformulates the electronic-structure problem into a functional minimization with respect to the charge density of interacting electrons in an external potential. While exact in principle, it is approximate in practice, and even in its exact form it is meant to reproduce correctly only the total energy and its derivatives, such as forces, phonons, or dielectric properties. Quasiparticle levels are outside the scope of the theory, with the exception of the highest occupied state, since this is given by the derivative of the energy with respect to the number of electrons. A fundamental property of the exact energy functional is that of piecewise linearity at fractional occupations in between integer fillings, but common approximations do not follow such piecewise behavior, leading to a discrepancy between total and partial electron removal energies. Since the former are typically well described, and the latter provide, via Janak’s theorem, orbital energies, this discrepancy leads to a poor comparison between predicted and measured spectroscopic properties. We illustrate here the powerful consequences that arise from imposing the constraint of piecewise linearity to the total energy functional, leading to the emergence of orbital-density-dependent functionals that (1) closely satisfy a generalized Koopmans condition and (2) are able to describe with great accuracy spectroscopic properties.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Note that besides functional approximations, the KS-DFT empty states need to be corrected for the derivative discontinuity of the potential upon infinitesimal electron addition. Such derivative discontinuity is usually neglected by approximate functionals which also tend to downshift further the orbital energies of empty states.
 
2
Otherwise, an infinitesimal transfer of charge δf > 0 from the highest occupied orbital to a state of energy ε i  < ε would decrease the total energy by an amount (ε i  – ε f < 0.
 
3
Reference [49] also highlights the limitations of conventional DFT approximations in capturing static correlation in spin-degenerate systems (the H2 dissociation problem). Self-interaction errors arising from fractional occupations are nevertheless distinct from static correlation errors arising from fractional spins. In this work, only the self-interaction problem is addressed.
 
4
Koopmans’ theorem has been originally proven for the HF method considering frozen orbitals [109]. Here we refer to this case as the restricted Koopmans theorem. The generalized version of the theorem has been introduced later [110] in order to include orbital relaxation. We note in passing that the generalized Koopmans theorem is a property of the exact many-body Green’s function G. The performance of GW approximations in this regard has been recently discussed by Bruneval [48]. In fact, when adopting the Lehmann representation, the poles of G, playing the role of (Dyson) orbital energies, are exactly given by total energy differences corresponding to many-body states with different number of particles (with one electron added or removed).
 
5
One could rely on other definitions to measure the lack of Koopmans compliance. In particular, (30) has recently been exploited in [64] within the frozen orbital approximation. The comparative assessment of these closely related definitions is beyond the scope of this introductory review and will be discussed in detail elsewhere.
 
6
It is very instructive to note that the linear-response DFT + U method of Cococcioni and de Gironcoli [57] is obtained from a similar expansion to evaluate the U parameters for the N I preselected orbitals χ Ii of the Ith atom. In fact, in its simplest form, the nonlinearity correction reads
$$ {E}_U\left[{f}_1,{f}_2,\dots, {\varphi}_1,{\varphi}_2,\dots \right]={\displaystyle \sum_{I=1}^{N_{\mathrm{atom}}}{\displaystyle \sum_{i=1}^{N_I}{\scriptscriptstyle \frac{U_{Ii}}{2}}{n}_{Ii}\left(1-{n}_{Ii}\right)}} $$
with
$$ {U}_{Ii}={\displaystyle \int {d}^3\mathbf{r}{d}^3{\mathbf{r}}^{\mathbf{\prime}}{d}^3{\mathbf{r}}^{\mathbf{{\prime\prime}}}\left|{\chi}_{Ii}\right|{}^2\left(\mathbf{r}\right){\tilde{\varepsilon}}^{-1}\left(\mathbf{r},{\mathbf{r}}^{\mathbf{\prime}}\right){f}_{\mathrm{Hxc}}\left({\mathbf{r}}^{\mathbf{\prime}},{\mathbf{r}}^{\mathbf{{\prime\prime}}}\right)\left|{\chi}_{Ii}\right|{}^2\left({\mathbf{r}}^{\mathbf{{\prime\prime}}}\right)}\kern1em \mathrm{and}\kern1em {n}_{Ii}={\displaystyle \sum_{j=1}^{+\infty }{f}_j\left|\left\langle {\chi}_{Ii}\Big|{\varphi}_j\right\rangle \right|{}^2.} $$
The spirit of the Koopmans-compliant correction is identical with the advantage of not requiring preselected atomic orbitals.
 
7
We note that in Figs. 2 and 4 that we have used the Koopmans-compliant functional defined in (40), where the α screening coefficient has been included. We have adopted the same value for α in both figures. If no α were used [(35)], the K panel in Fig. 2 would show a flat curve, while that of Fig. 4 would display a negative slope as the HF method.
 
8
For instance, one could compute the average dielectric screening coefficient related to the orbital ψ i through
$$ {\alpha}_i=\frac{{\displaystyle \int {d}^3\mathbf{r}{d}^3{\mathbf{r}}^{\mathbf{\prime}}{d}^3{\mathbf{r}}^{\mathbf{{\prime\prime}}}\left|{\psi}_i\right|{}^2\left(\mathbf{r}\right){\tilde{\varepsilon}}^{-1}\left(\mathbf{r},{\mathbf{r}}^{\mathbf{\prime}}\right){f}_{\mathrm{Hxc}}\left({\mathbf{r}}^{\mathbf{\prime}},{\mathbf{r}}^{\mathbf{{\prime\prime}}}\right)\left|{\psi}_i\right|{}^2\left({\mathbf{r}}^{\mathbf{{\prime\prime}}}\right)}}{{\displaystyle \int {d}^3\mathbf{r}{d}^3{\mathbf{r}}^{\mathbf{\prime}}\left|{\psi}_i\right|{}^2\left(\mathbf{r}\right){f}_{\mathrm{Hxc}}\left(\mathbf{r},{\mathbf{r}}^{\mathbf{\prime}}\right)\left|{\psi}_i\right|{}^2\left({\mathbf{r}}^{\mathbf{\prime}}\right)}}+\cdots, $$
where it is understood that each quantity that appears in the integrals must be calculated self-consistently.
 
9
The same approach is adopted when computing virtual orbital levels and band gaps within, e.g., hybrid DFT and DFT+U approximations.
 
10
A detailed sensitivity analysis of this approximation is presented in [62].
 
Literatur
1.
Zurück zum Zitat Allen SM, Thomas EL (1999) The structure of materials, MIT series in materials science and engineering. Wiley, New York Allen SM, Thomas EL (1999) The structure of materials, MIT series in materials science and engineering. Wiley, New York
2.
Zurück zum Zitat Martin RM (2008) Electronic structure: basic theory and practical methods. Cambridge University Press, Cambridge Martin RM (2008) Electronic structure: basic theory and practical methods. Cambridge University Press, Cambridge
4.
Zurück zum Zitat Eschrig H (2003) The fundamentals of density functional theory. Edition am Gutenbergplatz, Leipzig Eschrig H (2003) The fundamentals of density functional theory. Edition am Gutenbergplatz, Leipzig
6.
7.
Zurück zum Zitat Payne MC, Arias TA, Joannopoulos JD (1992) Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev Mod Phys 64(4):1045–1097. doi:10.1103/RevModPhys.64.1045 Payne MC, Arias TA, Joannopoulos JD (1992) Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev Mod Phys 64(4):1045–1097. doi:10.​1103/​RevModPhys.​64.​1045
8.
Zurück zum Zitat Perdew JP, Levy M, Balduz JL (1982) Density-functional theory for fractional particle number: derivative discontinuities of the energy. Phys Rev Lett 49(23):1691–1694. doi:10.1103/PhysRevLett.49.1691 Perdew JP, Levy M, Balduz JL (1982) Density-functional theory for fractional particle number: derivative discontinuities of the energy. Phys Rev Lett 49(23):1691–1694. doi:10.​1103/​PhysRevLett.​49.​1691
9.
Zurück zum Zitat Chong DP, Gritsenko OV, Baerends EJ (2002) Interpretation of the Kohn Sham orbital energies as approximate vertical ionization potentials. J Chem Phys 116(5):1760. doi:10.1063/1.1430255 Chong DP, Gritsenko OV, Baerends EJ (2002) Interpretation of the Kohn Sham orbital energies as approximate vertical ionization potentials. J Chem Phys 116(5):1760. doi:10.​1063/​1.​1430255
10.
Zurück zum Zitat Casida M (1995) Generalization of the optimized-effective-potential model to include electron correlation – a variational derivation of the Sham–Schluter equation for the exact exchange-correlation potential. Phys Rev A 51(3):2005–2013 Casida M (1995) Generalization of the optimized-effective-potential model to include electron correlation – a variational derivation of the Sham–Schluter equation for the exact exchange-correlation potential. Phys Rev A 51(3):2005–2013
13.
14.
Zurück zum Zitat Dreuw A, Weisman JL, Head-Gordon M (2003) Long-range charge-transfer excited states in time-dependent density functional theory require non-local exchange. J Chem Phys 119(6):2943. doi:10.1063/1.1590951 Dreuw A, Weisman JL, Head-Gordon M (2003) Long-range charge-transfer excited states in time-dependent density functional theory require non-local exchange. J Chem Phys 119(6):2943. doi:10.​1063/​1.​1590951
15.
Zurück zum Zitat Himmetoglu B, Marchenko A, Dabo I, Cococcioni M (2012) Role of electronic localization in the phosphorescence of iridium sensitizing dyes. J Chem Phys 137(15):154309. doi:10.1063/1.4757286 Himmetoglu B, Marchenko A, Dabo I, Cococcioni M (2012) Role of electronic localization in the phosphorescence of iridium sensitizing dyes. J Chem Phys 137(15):154309. doi:10.​1063/​1.​4757286
16.
Zurück zum Zitat Maitra NT (2005) Undoing static correlation: long-range charge transfer in time-dependent density-functional theory. J Chem Phys 122(23):234104. doi:10.1063/1.1924599 Maitra NT (2005) Undoing static correlation: long-range charge transfer in time-dependent density-functional theory. J Chem Phys 122(23):234104. doi:10.​1063/​1.​1924599
17.
Zurück zum Zitat Tozer DJ (2003) Relationship between long-range charge-transfer excitation energy error and integer discontinuity in Kohn Sham theory. J Chem Phys 119(24):12697. doi:10.1063/1.1633756 Tozer DJ (2003) Relationship between long-range charge-transfer excitation energy error and integer discontinuity in Kohn Sham theory. J Chem Phys 119(24):12697. doi:10.​1063/​1.​1633756
19.
20.
Zurück zum Zitat Hedin L (1965) New method for calculating the one-particle Green’s function with application to the electron-gas problem. Phys Rev 139(3A):A796–A823. doi:10.1103/PhysRev.139.A796 Hedin L (1965) New method for calculating the one-particle Green’s function with application to the electron-gas problem. Phys Rev 139(3A):A796–A823. doi:10.​1103/​PhysRev.​139.​A796
21.
23.
Zurück zum Zitat Zakharov O, Rubio A, Blase X, Cohen M, Louie S (1994) Quasiparticle band structures of six II-VI compounds: ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe. Phys Rev B 50(15):10780–10787. doi:10.1103/PhysRevB.50.10780 Zakharov O, Rubio A, Blase X, Cohen M, Louie S (1994) Quasiparticle band structures of six II-VI compounds: ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe. Phys Rev B 50(15):10780–10787. doi:10.​1103/​PhysRevB.​50.​10780
24.
25.
Zurück zum Zitat Albrecht S, Reining L, Del Sole R, Onida G (1998) Ab initio calculation of excitonic effects in the optical spectra of semiconductors. Phys Rev Lett 80(20):4510–4513. doi:10.1103/PhysRevLett.80.4510 Albrecht S, Reining L, Del Sole R, Onida G (1998) Ab initio calculation of excitonic effects in the optical spectra of semiconductors. Phys Rev Lett 80(20):4510–4513. doi:10.​1103/​PhysRevLett.​80.​4510
28.
Zurück zum Zitat Donnelly RA, Parr RG (1978) Elementary properties of an energy functional of the first-order reduced density matrix. J Chem Phys 69(10):4431. doi:10.1063/1.436433 Donnelly RA, Parr RG (1978) Elementary properties of an energy functional of the first-order reduced density matrix. J Chem Phys 69(10):4431. doi:10.​1063/​1.​436433
30.
Zurück zum Zitat Lathiotakis NN, Sharma S, Helbig N, Dewhurst JK, Marques MAL, Eich F, Baldsiefen T, Zacarias A, Gross EKU (2010) Discontinuities of the chemical potential in reduced density matrix functional theory. Z Phys Chem 224(3–4):467–480. doi:10.1524/zpch.2010.6118 Lathiotakis NN, Sharma S, Helbig N, Dewhurst JK, Marques MAL, Eich F, Baldsiefen T, Zacarias A, Gross EKU (2010) Discontinuities of the chemical potential in reduced density matrix functional theory. Z Phys Chem 224(3–4):467–480. doi:10.​1524/​zpch.​2010.​6118
31.
Zurück zum Zitat Sharma S, Dewhurst JK, Shallcross S, Gross EKU (2013) Spectral density and metal-insulator phase transition in Mott insulators within reduced density matrix functional theory. Phys Rev Lett 110(11):116403. doi:10.1103/PhysRevLett.110.116403 Sharma S, Dewhurst JK, Shallcross S, Gross EKU (2013) Spectral density and metal-insulator phase transition in Mott insulators within reduced density matrix functional theory. Phys Rev Lett 110(11):116403. doi:10.​1103/​PhysRevLett.​110.​116403
33.
34.
Zurück zum Zitat Livshits E, Baer R (2007) A well-tempered density functional theory of electrons in molecules. Phys Chem Chem Phys 9(23):2932. doi:10.1039/b617919c Livshits E, Baer R (2007) A well-tempered density functional theory of electrons in molecules. Phys Chem Chem Phys 9(23):2932. doi:10.​1039/​b617919c
37.
Zurück zum Zitat Refaely-Abramson S, Baer R, Kronik L (2011) Fundamental and excitation gaps in molecules of relevance for organic photovoltaics from an optimally tuned range-separated hybrid functional. Phys Rev B 84(7):075144. doi:10.1103/PhysRevB.84.075144 Refaely-Abramson S, Baer R, Kronik L (2011) Fundamental and excitation gaps in molecules of relevance for organic photovoltaics from an optimally tuned range-separated hybrid functional. Phys Rev B 84(7):075144. doi:10.​1103/​PhysRevB.​84.​075144
39.
Zurück zum Zitat Cococcioni M, Gironcoli SD (2005) Linear response approach to the calculation of the effective interaction parameters in the lda + u method. Phys Rev B 71(3):035105. doi:10.1103/PhysRevB.71.035105 Cococcioni M, Gironcoli SD (2005) Linear response approach to the calculation of the effective interaction parameters in the lda + u method. Phys Rev B 71(3):035105. doi:10.​1103/​PhysRevB.​71.​035105
40.
Zurück zum Zitat Kulik H, Cococcioni M, Scherlis D, Marzari N (2006) Density functional theory in transition-metal chemistry: a self-consistent Hubbard U approach. Phys Rev Lett 97(10):103001. doi:10.1103/PhysRevLett.97.103001 Kulik H, Cococcioni M, Scherlis D, Marzari N (2006) Density functional theory in transition-metal chemistry: a self-consistent Hubbard U approach. Phys Rev Lett 97(10):103001. doi:10.​1103/​PhysRevLett.​97.​103001
43.
Zurück zum Zitat Cancès E (2001) Self-consistent field algorithms for Kohn Sham models with fractional occupation numbers. J Chem Phys 114(24):10616. doi:10.1063/1.1373430 Cancès E (2001) Self-consistent field algorithms for Kohn Sham models with fractional occupation numbers. J Chem Phys 114(24):10616. doi:10.​1063/​1.​1373430
44.
Zurück zum Zitat Marzari N, Vanderbilt D, Payne M (1997) Ensemble density-functional theory for ab initio molecular dynamics of metals and finite-temperature insulators. Phys Rev Lett 79(7):1337–1340. doi:10.1103/PhysRevLett.79.1337 Marzari N, Vanderbilt D, Payne M (1997) Ensemble density-functional theory for ab initio molecular dynamics of metals and finite-temperature insulators. Phys Rev Lett 79(7):1337–1340. doi:10.​1103/​PhysRevLett.​79.​1337
45.
Zurück zum Zitat Cancès E, Le Bris C (2000) Can we outperform the DIIS approach for electronic structure calculations? Int J Quant Chem 79(2):8290 Cancès E, Le Bris C (2000) Can we outperform the DIIS approach for electronic structure calculations? Int J Quant Chem 79(2):8290
46.
Zurück zum Zitat Yang W, Zhang Y, Ayers PW (2000) Degenerate ground states and a fractional number of electrons in density and reduced density matrix functional theory. Phys Rev Lett 84(22):5172 Yang W, Zhang Y, Ayers PW (2000) Degenerate ground states and a fractional number of electrons in density and reduced density matrix functional theory. Phys Rev Lett 84(22):5172
47.
Zurück zum Zitat Mori-Sánchez P, Cohen A, Yang W (2006) Many-electron self-interaction error in approximate density functionals. J Chem Phys 125:201102 Mori-Sánchez P, Cohen A, Yang W (2006) Many-electron self-interaction error in approximate density functionals. J Chem Phys 125:201102
49.
50.
Zurück zum Zitat Mori-Sánchez P, Cohen A, Yang W (2008) Localization and delocalization errors in density functional theory and implications for band-gap prediction. Phys Rev Lett 100(14):146401. doi:10.1103/PhysRevLett.100.146401 Mori-Sánchez P, Cohen A, Yang W (2008) Localization and delocalization errors in density functional theory and implications for band-gap prediction. Phys Rev Lett 100(14):146401. doi:10.​1103/​PhysRevLett.​100.​146401
51.
Zurück zum Zitat Mori-Sánchez P, Cohen AJ, Yang W (2006) Many-electron self-interaction error in approximate density functionals. J Chem Phys 125(20):201102. doi:10.1063/1.2403848 Mori-Sánchez P, Cohen AJ, Yang W (2006) Many-electron self-interaction error in approximate density functionals. J Chem Phys 125(20):201102. doi:10.​1063/​1.​2403848
52.
Zurück zum Zitat Ruzsinszky A, Perdew JP, Csonka GI, Vydrov OA, Scuseria GE (2006) Spurious fractional charge on dissociated atoms: pervasive and resilient self-interaction error of common density functionals. J Chem Phys 125(19):194112. doi:10.1063/1.2387954 Ruzsinszky A, Perdew JP, Csonka GI, Vydrov OA, Scuseria GE (2006) Spurious fractional charge on dissociated atoms: pervasive and resilient self-interaction error of common density functionals. J Chem Phys 125(19):194112. doi:10.​1063/​1.​2387954
53.
Zurück zum Zitat Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York
54.
Zurück zum Zitat Ayers PW, Morrison RC, Parr RG (2005) Fermi–Amaldi model for exchange-correlation: atomic excitation energies from orbital energy differences. Mol Phys 103(15–16):2061–2072. doi:10.1080/00268970500130183 Ayers PW, Morrison RC, Parr RG (2005) Fermi–Amaldi model for exchange-correlation: atomic excitation energies from orbital energy differences. Mol Phys 103(15–16):2061–2072. doi:10.​1080/​0026897050013018​3
55.
Zurück zum Zitat Perdew J (1990) Size-consistency, self-interaction correction, and derivative discontinuity in density functional theory. In: Advances in quantum chemistry, vol 21. Elsevier, San Diego, California. pp 113–134 Perdew J (1990) Size-consistency, self-interaction correction, and derivative discontinuity in density functional theory. In: Advances in quantum chemistry, vol 21. Elsevier, San Diego, California. pp 113–134
56.
Zurück zum Zitat Kowalczyk T, Yost SR, Voorhis TV (2011) Assessment of the ΔSCF density functional theory approach for electronic excitations in organic dyes. J Chem Phys 134(5):054128. doi:10.1063/1.3530801 Kowalczyk T, Yost SR, Voorhis TV (2011) Assessment of the ΔSCF density functional theory approach for electronic excitations in organic dyes. J Chem Phys 134(5):054128. doi:10.​1063/​1.​3530801
57.
Zurück zum Zitat Cococcioni M, de Gironcoli S (2005) Linear response approach to the calculation of the effective interaction parameters in the LDA + U method. Phys Rev B 71(3):035105. doi:10.1103/PhysRevB.71.035105 Cococcioni M, de Gironcoli S (2005) Linear response approach to the calculation of the effective interaction parameters in the LDA + U method. Phys Rev B 71(3):035105. doi:10.​1103/​PhysRevB.​71.​035105
58.
59.
Zurück zum Zitat Hachmann J, Olivares-Amaya R, Atahan-Evrenk S, Amador-Bedolla C, Sanchez-Carrera RS, Gold-Parker A, Vogt L, Brockway AM, Aspuru-Guzik A (2011) The Harvard clean energy project: large-scale computational screening and design of organic photovoltaics on the world community grid. J Phys Chem Lett 2(17):2241–2251. doi:10.1021/jz200866s Hachmann J, Olivares-Amaya R, Atahan-Evrenk S, Amador-Bedolla C, Sanchez-Carrera RS, Gold-Parker A, Vogt L, Brockway AM, Aspuru-Guzik A (2011) The Harvard clean energy project: large-scale computational screening and design of organic photovoltaics on the world community grid. J Phys Chem Lett 2(17):2241–2251. doi:10.​1021/​jz200866s
62.
Zurück zum Zitat Dabo I, Ferretti A, Park CH, Poilvert N, Li Y, Cococcioni M, Marzari N (2013) Donor and acceptor levels of organic photovoltaic compounds from first principles. Phys Chem Chem Phys 15:685. doi:10.1039/c2cp43491a Dabo I, Ferretti A, Park CH, Poilvert N, Li Y, Cococcioni M, Marzari N (2013) Donor and acceptor levels of organic photovoltaic compounds from first principles. Phys Chem Chem Phys 15:685. doi:10.​1039/​c2cp43491a
64.
65.
66.
Zurück zum Zitat Körzdörfer T, Kümmel S, Mundt M (2008) Self-interaction correction and the optimized effective potential. J Chem Phys 129(1):014110. doi:10.1063/1.2944272 Körzdörfer T, Kümmel S, Mundt M (2008) Self-interaction correction and the optimized effective potential. J Chem Phys 129(1):014110. doi:10.​1063/​1.​2944272
67.
Zurück zum Zitat Krieger J, Li Y, Iafrate G (1992) Construction and application of an accurate local spin-polarized Kohn–Sham potential with integer discontinuity: exchange-only theory. Phys Rev A 45(1):101–126. doi:10.1103/PhysRevA.45.101 Krieger J, Li Y, Iafrate G (1992) Construction and application of an accurate local spin-polarized Kohn–Sham potential with integer discontinuity: exchange-only theory. Phys Rev A 45(1):101–126. doi:10.​1103/​PhysRevA.​45.​101
68.
Zurück zum Zitat Gatti M, Olevano V, Reining L, Tokatly IV (2007) Transforming nonlocality into a frequency dependence: a shortcut to spectroscopy. Phys Rev Lett 99(5):057401 Gatti M, Olevano V, Reining L, Tokatly IV (2007) Transforming nonlocality into a frequency dependence: a shortcut to spectroscopy. Phys Rev Lett 99(5):057401
69.
Zurück zum Zitat Ferretti A, Cococcioni M, Marzari N (2013) Submitted Ferretti A, Cococcioni M, Marzari N (2013) Submitted
70.
Zurück zum Zitat Cohen AJ, Mori-Sanchez P, Yang W (2007) Development of exchange-correlation functionals with minimal many-electron self-interaction error. J Chem Phys 126(19):191109. doi:10.1063/1.2741248 Cohen AJ, Mori-Sanchez P, Yang W (2007) Development of exchange-correlation functionals with minimal many-electron self-interaction error. J Chem Phys 126(19):191109. doi:10.​1063/​1.​2741248
71.
Zurück zum Zitat Pederson M, Heaton R, Lin C (1984) Local density Hartree–Fock theory of electronic states of molecules with self interaction correction. J Chem Phys 80:1972 Pederson M, Heaton R, Lin C (1984) Local density Hartree–Fock theory of electronic states of molecules with self interaction correction. J Chem Phys 80:1972
72.
Zurück zum Zitat Stengel M, Spaldin N (2008) Self-interaction correction with Wannier functions. Phys Rev B 77(15):155106 Stengel M, Spaldin N (2008) Self-interaction correction with Wannier functions. Phys Rev B 77(15):155106
73.
Zurück zum Zitat Marzari N, Vanderbilt D (1997) Maximally localized generalized Wannier functions for composite energy bands. Phys Rev B 56(20):12847–12865 Marzari N, Vanderbilt D (1997) Maximally localized generalized Wannier functions for composite energy bands. Phys Rev B 56(20):12847–12865
74.
Zurück zum Zitat Wannier GH (1937) The structure of electronic excitation levels in insulation crystals. Phys Rev 52:191–197 Wannier GH (1937) The structure of electronic excitation levels in insulation crystals. Phys Rev 52:191–197
75.
Zurück zum Zitat Messud J, Dinh P, Reinhard PG, Suraud E (2009) On the exact treatment of time-dependent self-interaction correction. Ann Phys 324:955–976 Messud J, Dinh P, Reinhard PG, Suraud E (2009) On the exact treatment of time-dependent self-interaction correction. Ann Phys 324:955–976
76.
Zurück zum Zitat Vydrov O, Scuseria G, Perdew J (2007) Tests of functionals for systems with fractional electron number. J Chem Phys 126:154109 Vydrov O, Scuseria G, Perdew J (2007) Tests of functionals for systems with fractional electron number. J Chem Phys 126:154109
77.
Zurück zum Zitat Körzdörfer T (2011) On the relation between orbital-localization and self-interaction errors in the density functional theory treatment of organic semiconductors. J Chem Phys 134:094111 Körzdörfer T (2011) On the relation between orbital-localization and self-interaction errors in the density functional theory treatment of organic semiconductors. J Chem Phys 134:094111
79.
Zurück zum Zitat Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Corso AD, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) Quantum espresso: a modular and open-source software project for quantum simulations of materials. J Phys Condens Mat 21(39):395502 Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Corso AD, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) Quantum espresso: a modular and open-source software project for quantum simulations of materials. J Phys Condens Mat 21(39):395502
80.
Zurück zum Zitat Li Y, Dabo I (2011) Electronic levels and electrical response of periodic molecular structures from plane-wave orbital-dependent calculations. Phys Rev B 84(15):155127 Li Y, Dabo I (2011) Electronic levels and electrical response of periodic molecular structures from plane-wave orbital-dependent calculations. Phys Rev B 84(15):155127
81.
Zurück zum Zitat Perdew J, Levy M (1983) Physical content of the exact Kohn–Sham orbital energies - band-gaps and derivative discontinuities. Phys Rev Lett 51(20):1884–1887 Perdew J, Levy M (1983) Physical content of the exact Kohn–Sham orbital energies - band-gaps and derivative discontinuities. Phys Rev Lett 51(20):1884–1887
82.
Zurück zum Zitat Perdew J, Levy M (1997) Comment on “significance of the highest occupied Kohn–Sham eigenvalue”. Phys Rev B 56(24):16021–16028 Perdew J, Levy M (1997) Comment on “significance of the highest occupied Kohn–Sham eigenvalue”. Phys Rev B 56(24):16021–16028
83.
Zurück zum Zitat Blase X, Attaccalite C, Olevano V (2011) First-principles GW calculations for fullerenes, porphyrins, phthalocyanine, and other molecules of interest for organic photovoltaic applications. Phys Rev B 83(11):115103. doi:10.1103/PhysRevB.83.115103 Blase X, Attaccalite C, Olevano V (2011) First-principles GW calculations for fullerenes, porphyrins, phthalocyanine, and other molecules of interest for organic photovoltaic applications. Phys Rev B 83(11):115103. doi:10.​1103/​PhysRevB.​83.​115103
84.
Zurück zum Zitat Tiago ML, Kent PRC, Hood RQ, Reboredo FA (2008) Neutral and charged excitations in carbon fullerenes from first-principles many-body theories. J Chem Phys 129(8):084311 Tiago ML, Kent PRC, Hood RQ, Reboredo FA (2008) Neutral and charged excitations in carbon fullerenes from first-principles many-body theories. J Chem Phys 129(8):084311
85.
Zurück zum Zitat Foerster D, Koval P, Sánchez-Portal D (2011) An O (N3) implementation of Hedin’s GW approximation for molecules. J Chem Phys 135:074105 Foerster D, Koval P, Sánchez-Portal D (2011) An O (N3) implementation of Hedin’s GW approximation for molecules. J Chem Phys 135:074105
86.
Zurück zum Zitat Pines D (1963) Elementary excitations in solids. W.A. Benjamin, New York Pines D (1963) Elementary excitations in solids. W.A. Benjamin, New York
87.
Zurück zum Zitat Pines D, Nozières P (1989) The theory of quantum liquids. Addison-Wesley, New York Pines D, Nozières P (1989) The theory of quantum liquids. Addison-Wesley, New York
88.
Zurück zum Zitat Onida G, Reining L, Rubio A (2002) Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev Mod Phys 74(2):601–659 Onida G, Reining L, Rubio A (2002) Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev Mod Phys 74(2):601–659
89.
Zurück zum Zitat Ferretti A, Mallia G, Martin-Samos L, Bussi G, Ruini A, Montanari B, Harrison N (2012) Ab initio complex band structure of conjugated polymers: effects of hybrid density functional theory and GW schemes. Phys Rev B 85(23):235105. doi:10.1103/PhysRevB.85.235105 Ferretti A, Mallia G, Martin-Samos L, Bussi G, Ruini A, Montanari B, Harrison N (2012) Ab initio complex band structure of conjugated polymers: effects of hybrid density functional theory and GW schemes. Phys Rev B 85(23):235105. doi:10.​1103/​PhysRevB.​85.​235105
90.
Zurück zum Zitat Curtiss L, Raghavachari K, Redfern P, Pople J (1997) Assessment of gaussian-2 and density functional theories for the computation of enthalpies of formation. J Chem Phys 106(3):1063–1079 Curtiss L, Raghavachari K, Redfern P, Pople J (1997) Assessment of gaussian-2 and density functional theories for the computation of enthalpies of formation. J Chem Phys 106(3):1063–1079
92.
Zurück zum Zitat Kadantsev ES, Stott MJ, Rubio A (2006) Electronic structure and excitations in oligoacenes from ab initio calculations. J Chem Phys 124(13):134901 Kadantsev ES, Stott MJ, Rubio A (2006) Electronic structure and excitations in oligoacenes from ab initio calculations. J Chem Phys 124(13):134901
93.
Zurück zum Zitat Piancastelli M, Kelly M, Chang Y, McKinley J, Margaritondo G (1987) Benzene adsorption on low-temperature silicon: a synchrotron-radiation photoemission study of valence and core states. Phys Rev B 35(17):9218–9221. doi:10.1103/PhysRevB.35.9218 Piancastelli M, Kelly M, Chang Y, McKinley J, Margaritondo G (1987) Benzene adsorption on low-temperature silicon: a synchrotron-radiation photoemission study of valence and core states. Phys Rev B 35(17):9218–9221. doi:10.​1103/​PhysRevB.​35.​9218
94.
Zurück zum Zitat Trofimov AB, Zaitseva IL, Moskovskaya TE, Vitkovskaya NM (2008) Theoretical investigation of photoelectron spectra of furan, pyrrole, thiophene, and selenole. Chem Heterocycl Comp 44(9):1101–1112. doi:10.1007/s10593-008-0159-5 Trofimov AB, Zaitseva IL, Moskovskaya TE, Vitkovskaya NM (2008) Theoretical investigation of photoelectron spectra of furan, pyrrole, thiophene, and selenole. Chem Heterocycl Comp 44(9):1101–1112. doi:10.​1007/​s10593-008-0159-5
95.
Zurück zum Zitat Coropceanu V, Malagoli M, da Silva D, Gruhn N, Bill T, Bredas J (2002) Hole- and electron-vibrational couplings in oligoacene crystals: intramolecular contributions. Phys Rev Lett 89(27):275503. doi:10.1103/PhysRevLett.89.275503 Coropceanu V, Malagoli M, da Silva D, Gruhn N, Bill T, Bredas J (2002) Hole- and electron-vibrational couplings in oligoacene crystals: intramolecular contributions. Phys Rev Lett 89(27):275503. doi:10.​1103/​PhysRevLett.​89.​275503
96.
Zurück zum Zitat CRC (2009) CRC handbook of chemistry and physics. CRC, Boca Raton CRC (2009) CRC handbook of chemistry and physics. CRC, Boca Raton
97.
Zurück zum Zitat Kramida A, Ralchenko Y, Reader J, NIST ASD Team (2013) NIST atomic spectra database Kramida A, Ralchenko Y, Reader J, NIST ASD Team (2013) NIST atomic spectra database
98.
Zurück zum Zitat Mehlhorn W, Breuckmann B, Hausamann D (1977) Electron spectra of free metal atoms. Phys Scrip 16(5–6):177 Mehlhorn W, Breuckmann B, Hausamann D (1977) Electron spectra of free metal atoms. Phys Scrip 16(5–6):177
99.
Zurück zum Zitat Shirley D, Martin R, Kowalczyk S, McFeely F, Ley L (1977) Core-electron binding energies of the first thirty elements. Phys Rev B 15(2):544 Shirley D, Martin R, Kowalczyk S, McFeely F, Ley L (1977) Core-electron binding energies of the first thirty elements. Phys Rev B 15(2):544
100.
Zurück zum Zitat Banna M, Wallbank B, Frost D, McDowell C, Perera J (1978) Free atom core binding energies from X-ray photoelectron spectroscopy. II. Na, K, Rb, Cs, and Mg. J Chem Phys 68:5459 Banna M, Wallbank B, Frost D, McDowell C, Perera J (1978) Free atom core binding energies from X-ray photoelectron spectroscopy. II. Na, K, Rb, Cs, and Mg. J Chem Phys 68:5459
101.
Zurück zum Zitat Perera J, Frost D, McDowell C, Ewig C, Key R, Banna M (1982) Atomic and ionic core binding energies of selected levels in the alkaline earths from X-ray photoelectron spectroscopy and Dirac–Fock calculations. J Chem Phys 77:3308 Perera J, Frost D, McDowell C, Ewig C, Key R, Banna M (1982) Atomic and ionic core binding energies of selected levels in the alkaline earths from X-ray photoelectron spectroscopy and Dirac–Fock calculations. J Chem Phys 77:3308
102.
Zurück zum Zitat Chen H, Pan Y, Groh S, Hagan T, Ridge D (1991) Gas-phase charge-transfer reactions and electron affinities of macrocyclic, anionic nickel complexes: Ni (salen), Ni (tetraphenylporphyrin), and derivatives. J Am Chem Soc 113(7):2766–2767 Chen H, Pan Y, Groh S, Hagan T, Ridge D (1991) Gas-phase charge-transfer reactions and electron affinities of macrocyclic, anionic nickel complexes: Ni (salen), Ni (tetraphenylporphyrin), and derivatives. J Am Chem Soc 113(7):2766–2767
103.
Zurück zum Zitat Schiedt J, Weinkauf R (1997) Photodetachment photoelectron spectroscopy of mass selected anions: anthracene and the anthracene-H2O cluster. Chem Phys Lett 266(1):201–205 Schiedt J, Weinkauf R (1997) Photodetachment photoelectron spectroscopy of mass selected anions: anthracene and the anthracene-H2O cluster. Chem Phys Lett 266(1):201–205
104.
Zurück zum Zitat Crocker L, Wang T, Kebarle P (1993) Electron affinities of some polycyclic aromatic hydrocarbons, obtained from electron-transfer equilibria. J Am Chem Soc 115(17):7818–7822. doi:10.1021/ja00070a030 Crocker L, Wang T, Kebarle P (1993) Electron affinities of some polycyclic aromatic hydrocarbons, obtained from electron-transfer equilibria. J Am Chem Soc 115(17):7818–7822. doi:10.​1021/​ja00070a030
105.
Zurück zum Zitat Prinzbach H, Weller A, Landenberger P, Wahl F, Worth J, Scott L, Gelmont M, Olevano D, von Issendorff B (2000) Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C-20. Nature 407(6800):60–63 Prinzbach H, Weller A, Landenberger P, Wahl F, Worth J, Scott L, Gelmont M, Olevano D, von Issendorff B (2000) Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C-20. Nature 407(6800):60–63
106.
Zurück zum Zitat Yang S, Pettiette C, Conceicao J, Cheshnovsky O, Smalley R (1987) Ups of buckminsterfullerene and other large clusters of carbon. Chem Phys Lett 139(3):233–238 Yang S, Pettiette C, Conceicao J, Cheshnovsky O, Smalley R (1987) Ups of buckminsterfullerene and other large clusters of carbon. Chem Phys Lett 139(3):233–238
107.
Zurück zum Zitat Wang XB, Ding CF, Wang LS (1999) High resolution photoelectron spectroscopy of C60. J Chem Phys 110:8217–8220 Wang XB, Ding CF, Wang LS (1999) High resolution photoelectron spectroscopy of C60. J Chem Phys 110:8217–8220
108.
Zurück zum Zitat Wang XB, Woo HK, Huang X, Kappes M, Wang LS (2006) Direct experimental probe of the on-site coulomb repulsion in the doubly charged fullerene anion c702-. Phys Rev Lett 96(14):143002. doi:10.1103/PhysRevLett.96.143002 Wang XB, Woo HK, Huang X, Kappes M, Wang LS (2006) Direct experimental probe of the on-site coulomb repulsion in the doubly charged fullerene anion c702-. Phys Rev Lett 96(14):143002. doi:10.​1103/​PhysRevLett.​96.​143002
109.
Zurück zum Zitat Zsabo A, Ostlund NS (1996) Modern quantum chemistry: introduction to advanced electronic structure theory. Dover, New York Zsabo A, Ostlund NS (1996) Modern quantum chemistry: introduction to advanced electronic structure theory. Dover, New York
110.
Zurück zum Zitat Phillips J (1961) Generalized Koopmans theorem. Phys Rev 123(2):420 Phillips J (1961) Generalized Koopmans theorem. Phys Rev 123(2):420
Metadaten
Titel
Piecewise Linearity and Spectroscopic Properties from Koopmans-Compliant Functionals
verfasst von
Ismaila Dabo
Andrea Ferretti
Nicola Marzari
Copyright-Jahr
2014
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/128_2013_504

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.