Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 2/2017

07.09.2016 | Original Article

Pilot-scale pretreatments of sugarcane bagasse with steam explosion and mineral acid, organic acid, and mixed acids: synergies, enzymatic hydrolysis efficiencies, and structure-morphology correlations

verfasst von: Siddhartha Pal, Shereena Joy, Pramod Kumbhar, Kalpana D. Trimukhe, Rishi Gupta, Ramesh C. Kuhad, Anjani J. Varma, Sasisanker Padmanabhan

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In lignocellulosic (LC) ethanol processes, to facilitate enzymatic hydrolysis of cellulose, a physical chemical pretreatment is vital. In this study, we explored a single as well as a two-step physical-chemical pretreatment involving steam and mixed acid on unwashed sugarcane bagasse at pilot-scale level in a continuous horizontal reactor. To serve as a large-scale model, pretreatments were carried out at high solid levels of 18–20 % w/w. For the pretreatment, partial replacement of corrosive sulfuric acid with a milder acid-like oxalic acid was explored to derive possible advantages and synergies accruing by using a mixture of mineral acid and organic acid. The results of this work showed that first-step pretreatment carried out by the mixing of sulfuric acid (1.5 % w/w) and oxalic acid (1.5 % w/w) at 150 °C followed by a second-step steam explosion pretreatment at 180 °C gave significant synergies and advantages over other variants of pretreatments investigated, such as lower inhibitor levels and lower reaction severity. On post-pretreated bagasse, this study conducted comparative enzymatic hydrolysis study using a simple lab enzyme and a robust commercial enzyme. It was found that the addition of Tween 80 to the lab enzyme improved its performance to match the performance of the commercial enzyme. Scanning electron microscopy (SEM) studies were further carried out to correlate the morphology of pretreated samples with efficiency of enzyme hydrolysis. Besides morphological study, Fourier transform infrared (FTIR) studies of pretreated samples showed higher syringyl/guaiacyl ratio for all pretreatments, indicating lower levels of pseudo-lignins, which is beneficial for improved enzyme hydrolysis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Kerr RA (2011) Peak oil production may already be here. Science 331:1510–1511CrossRef Kerr RA (2011) Peak oil production may already be here. Science 331:1510–1511CrossRef
2.
Zurück zum Zitat Sommerville C, Youngs H, Taylor C, Davis SC, Long SP (2010) Feedstocks for lignocellulosic biofuels. Science 329:790CrossRef Sommerville C, Youngs H, Taylor C, Davis SC, Long SP (2010) Feedstocks for lignocellulosic biofuels. Science 329:790CrossRef
3.
Zurück zum Zitat Pandey A, Soccol CR, Nigam PE, SoccoL VT (2000) Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresour Technol 74(1):69–80CrossRef Pandey A, Soccol CR, Nigam PE, SoccoL VT (2000) Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresour Technol 74(1):69–80CrossRef
4.
Zurück zum Zitat Dias MOS, Ensinas AV, Nebra SA, Maciel R, Rossell CEV, Maciel MRW (2009) Production of bioethanol and other bio-based materials from sugarcane bagasse: integration to conventional bioethanol production process. Chem Eng Res Des 87(9):1206–1216CrossRef Dias MOS, Ensinas AV, Nebra SA, Maciel R, Rossell CEV, Maciel MRW (2009) Production of bioethanol and other bio-based materials from sugarcane bagasse: integration to conventional bioethanol production process. Chem Eng Res Des 87(9):1206–1216CrossRef
5.
Zurück zum Zitat Betancur GJV, Pereira JRN (2010) Sugarcane bagasse as feedstock for second generation ethanol production. Part I: diluted acid pretreatment optimization. Electronic Journal of Biotechnol 13(3):1–9 Betancur GJV, Pereira JRN (2010) Sugarcane bagasse as feedstock for second generation ethanol production. Part I: diluted acid pretreatment optimization. Electronic Journal of Biotechnol 13(3):1–9
6.
Zurück zum Zitat Rabelo SC, Carrere H, Maciel Filho R, Costa AC (2011) Production of bioethanol, methane and heat from sugarcane bagasse in a biorefinery concept. Bioresour Technol 102(17):7887–7895CrossRef Rabelo SC, Carrere H, Maciel Filho R, Costa AC (2011) Production of bioethanol, methane and heat from sugarcane bagasse in a biorefinery concept. Bioresour Technol 102(17):7887–7895CrossRef
7.
Zurück zum Zitat Ferreria-Leitao V, Gottschalk LMF, Ferrara MA, Nepumuceno AL, Molinari HBC (2010) Biomass residues in Brazil: availability and potential uses. Waste Biomass Valor 1:65–76CrossRef Ferreria-Leitao V, Gottschalk LMF, Ferrara MA, Nepumuceno AL, Molinari HBC (2010) Biomass residues in Brazil: availability and potential uses. Waste Biomass Valor 1:65–76CrossRef
8.
Zurück zum Zitat Chandel AK, da Silva S, Carvalho W, Singh OV (2012) Sugarcane bagasse and leaves: foreseeable biomass of biofuel and bio-products. J Chem Technol Biotechnol 87(1):11–20CrossRef Chandel AK, da Silva S, Carvalho W, Singh OV (2012) Sugarcane bagasse and leaves: foreseeable biomass of biofuel and bio-products. J Chem Technol Biotechnol 87(1):11–20CrossRef
9.
Zurück zum Zitat Soccol CR, Vandenberghe LPDS, Medeiros ABP, Karp SG, Buckeridge M, Ramos LP, Pitarelo AP, Ferreira-Leitão V, Gottschalk LMF, Ferrara MA, Bon EPS, Moraes LMP, Araujo JA, Torres FAG (2010) Bioethanol from lignocelluloses: status and perspectives in Brazil. Bioresour Technol 101(13):4820–4825CrossRef Soccol CR, Vandenberghe LPDS, Medeiros ABP, Karp SG, Buckeridge M, Ramos LP, Pitarelo AP, Ferreira-Leitão V, Gottschalk LMF, Ferrara MA, Bon EPS, Moraes LMP, Araujo JA, Torres FAG (2010) Bioethanol from lignocelluloses: status and perspectives in Brazil. Bioresour Technol 101(13):4820–4825CrossRef
10.
Zurück zum Zitat Macrelli S, Mogensen J, Zacchi G (2012) Techno-economic evaluation of 2nd generation bioethanol production from sugar cane bagasse and leaves integrated with the sugar-based ethanol process. Biotechnol Biofuels 5:22CrossRef Macrelli S, Mogensen J, Zacchi G (2012) Techno-economic evaluation of 2nd generation bioethanol production from sugar cane bagasse and leaves integrated with the sugar-based ethanol process. Biotechnol Biofuels 5:22CrossRef
11.
Zurück zum Zitat Rabelo SC, Amezquita-Fonseca NA, Andrade RR, Maciel-Filho R, Costa A (2011) Ethanol production from enzymatic hydrolysis of sugarcane bagasse pretreated with lime and alkaline hydrogen peroxide. Biomass Bioenergy 35(7):2600–2607CrossRef Rabelo SC, Amezquita-Fonseca NA, Andrade RR, Maciel-Filho R, Costa A (2011) Ethanol production from enzymatic hydrolysis of sugarcane bagasse pretreated with lime and alkaline hydrogen peroxide. Biomass Bioenergy 35(7):2600–2607CrossRef
12.
Zurück zum Zitat Teixieira LC, Linden JC, Herbert HA (1999) Optimizing peracetic acid treatment conditions for improved simultaneous saccharification and cofermentation of sugarcane bagasse to ethanol fuel. Renew Energy 16(1–4):1070–1073CrossRef Teixieira LC, Linden JC, Herbert HA (1999) Optimizing peracetic acid treatment conditions for improved simultaneous saccharification and cofermentation of sugarcane bagasse to ethanol fuel. Renew Energy 16(1–4):1070–1073CrossRef
13.
Zurück zum Zitat Varma AJ (2009) Pretreatment of plant biomass carbohydrates for ethanol production: an overview. Trends in. Carbohydr Res 1(2):10–15 Varma AJ (2009) Pretreatment of plant biomass carbohydrates for ethanol production: an overview. Trends in. Carbohydr Res 1(2):10–15
14.
Zurück zum Zitat Chandel AK, Antunes FAF, Anjos V, Bell MJV, Rodrigues L, Polikarpov I, Azevedo de ER, Bernardinelli O, Rosa CA, Pagnocca FC, da Silva SS (2014) Multi-scale structural and chemical analysis of sugarcane bagasse in the process of sequential acid-base pretreatment and ethanol production by Scheffersomyces shehatae and Saccharomyces cerevisiae. Biotechnol Biofuels 7:63CrossRef Chandel AK, Antunes FAF, Anjos V, Bell MJV, Rodrigues L, Polikarpov I, Azevedo de ER, Bernardinelli O, Rosa CA, Pagnocca FC, da Silva SS (2014) Multi-scale structural and chemical analysis of sugarcane bagasse in the process of sequential acid-base pretreatment and ethanol production by Scheffersomyces shehatae and Saccharomyces cerevisiae. Biotechnol Biofuels 7:63CrossRef
15.
Zurück zum Zitat Wyman CE, Dale BE, Elander RT (2006) Coordinated development of leading biomass technologies. Bioresour Technol 96(18):1959–1966CrossRef Wyman CE, Dale BE, Elander RT (2006) Coordinated development of leading biomass technologies. Bioresour Technol 96(18):1959–1966CrossRef
16.
Zurück zum Zitat Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3372CrossRef Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3372CrossRef
17.
Zurück zum Zitat Pedersen M, Viko-Nielsen A, Meyer AS (2010) Monosaccharide yields and lignin removal from wheat straw in response to catalyst type and pH during mild thermal pretreatment. Process Biochem 45(7):1181–1186CrossRef Pedersen M, Viko-Nielsen A, Meyer AS (2010) Monosaccharide yields and lignin removal from wheat straw in response to catalyst type and pH during mild thermal pretreatment. Process Biochem 45(7):1181–1186CrossRef
18.
Zurück zum Zitat Chundawat SPS, Beckham GT, Himmel ME, Dale BE (2011) Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol Eng 2:121–145CrossRef Chundawat SPS, Beckham GT, Himmel ME, Dale BE (2011) Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol Eng 2:121–145CrossRef
19.
Zurück zum Zitat Pu Y, Hu F, Huang F, Davison BH, Ragauskas AJ (2013) Assessing the molecular structure basis for biomass recalcitrance during dilute acid and hydrothermal pretreatments. Biotechnol Biofuels 6(1) Pu Y, Hu F, Huang F, Davison BH, Ragauskas AJ (2013) Assessing the molecular structure basis for biomass recalcitrance during dilute acid and hydrothermal pretreatments. Biotechnol Biofuels 6(1)
20.
Zurück zum Zitat Sousa LC, Chundawat SPS, Balan V, Dale BE (2009) Cradle-to-crave assessment of existing lignocellulose pretreatment technologies. Curr Opin Biotechnol 20(3):339–347CrossRef Sousa LC, Chundawat SPS, Balan V, Dale BE (2009) Cradle-to-crave assessment of existing lignocellulose pretreatment technologies. Curr Opin Biotechnol 20(3):339–347CrossRef
21.
Zurück zum Zitat Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686CrossRef Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686CrossRef
22.
Zurück zum Zitat Krishnan C, Sousa LC, Jin M, Chang L, Dale BE, Balan V (2010) Alkali-based AFEX pretreatment for the conversion of sugarcane bagasse and cane leaf residues to ethanol. Biotechnol Bioeng 107(3):441–450CrossRef Krishnan C, Sousa LC, Jin M, Chang L, Dale BE, Balan V (2010) Alkali-based AFEX pretreatment for the conversion of sugarcane bagasse and cane leaf residues to ethanol. Biotechnol Bioeng 107(3):441–450CrossRef
23.
Zurück zum Zitat Schell DJ, Farmer J, Newman M, McMillan JD (2003) Dilute-sulfuric acid pretreatment of corn stover in pilot-scale reactor: investigation of yields, kinetics, and enzymatic digestibilities of solids. Appl Biochem Biotechnol 105–108:69–85 Schell DJ, Farmer J, Newman M, McMillan JD (2003) Dilute-sulfuric acid pretreatment of corn stover in pilot-scale reactor: investigation of yields, kinetics, and enzymatic digestibilities of solids. Appl Biochem Biotechnol 105–108:69–85
24.
Zurück zum Zitat Rocha GJM, Nascimento VM, Silva VFN, Chandel AK (2014) Scale-up Pretreatment Studies on Sugarcane Bagasse and Straw for Second-Generation Ethanol Production. In: Fundamental aspects, recent developments, and future perspectives: biofuels in Brazil. Springer International, Switzerland, pp 225–254 Rocha GJM, Nascimento VM, Silva VFN, Chandel AK (2014) Scale-up Pretreatment Studies on Sugarcane Bagasse and Straw for Second-Generation Ethanol Production. In: Fundamental aspects, recent developments, and future perspectives: biofuels in Brazil. Springer International, Switzerland, pp 225–254
25.
Zurück zum Zitat Pal S, Joy S, Trimukhe KD, Kumbhar PS, Varma AJ, Padmanabhan S (2016) Effect of mixed acid catalysis on pretreatment and enzymatic digestibility of sugar cane bagasse. Energy and Fuels. doi:10.1021/acs.energyfuels.6b01011 Pal S, Joy S, Trimukhe KD, Kumbhar PS, Varma AJ, Padmanabhan S (2016) Effect of mixed acid catalysis on pretreatment and enzymatic digestibility of sugar cane bagasse. Energy and Fuels. doi:10.​1021/​acs.​energyfuels.​6b01011
26.
Zurück zum Zitat Ye S, Jiayang C (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11CrossRef Ye S, Jiayang C (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11CrossRef
27.
Zurück zum Zitat Guo B, Zhang Y, Ha S-J, Jin Y-S, Morgenroth E (2012) Combined biomimetic and inorganic acids hydrolysis of hemicellulose in Miscanthus for bioethanol production. Bioresour Technol 110:278–287CrossRef Guo B, Zhang Y, Ha S-J, Jin Y-S, Morgenroth E (2012) Combined biomimetic and inorganic acids hydrolysis of hemicellulose in Miscanthus for bioethanol production. Bioresour Technol 110:278–287CrossRef
28.
Zurück zum Zitat Zhang T, Kumar R, Wyman CE (2013) Sugar yields from dilute oxalic acid pretreatment of maple wood compared to those with other dilute acids and hot water. Carbohydr Polym 92(1):334–344CrossRef Zhang T, Kumar R, Wyman CE (2013) Sugar yields from dilute oxalic acid pretreatment of maple wood compared to those with other dilute acids and hot water. Carbohydr Polym 92(1):334–344CrossRef
32.
Zurück zum Zitat Mosier NS, Sarikaya A, Ladisch CM, Ladisch MR (2001) Characterization of dicarboxylic acids for cellulose hydrolysis. Biotechnol Prog 17(3):474–480CrossRef Mosier NS, Sarikaya A, Ladisch CM, Ladisch MR (2001) Characterization of dicarboxylic acids for cellulose hydrolysis. Biotechnol Prog 17(3):474–480CrossRef
33.
Zurück zum Zitat Lee JW, Houtman CJ, Kim HY, Choi IG, Jeffries TW (2011) Scale-up study of oxalic acid pretreatment of agricultural lignocellulosic biomass for the production of bioethanol. Bioresour Technol 102(16):7451–7456CrossRef Lee JW, Houtman CJ, Kim HY, Choi IG, Jeffries TW (2011) Scale-up study of oxalic acid pretreatment of agricultural lignocellulosic biomass for the production of bioethanol. Bioresour Technol 102(16):7451–7456CrossRef
34.
Zurück zum Zitat Palmqvist E, Hagerdal BH (2000) Fermentation of lignocellulosic hydrolyzates. II. Inhibitors and mechanism of inhibition. Bioresour Technol 74:25–23CrossRef Palmqvist E, Hagerdal BH (2000) Fermentation of lignocellulosic hydrolyzates. II. Inhibitors and mechanism of inhibition. Bioresour Technol 74:25–23CrossRef
35.
Zurück zum Zitat Tu M, Saddler JN (2010) Potential enzyme cost reduction with the addition of surfactant during the hydrolysis of pretreated softwood. Appl Biochem Biotechnol 161(1–8):274–287CrossRef Tu M, Saddler JN (2010) Potential enzyme cost reduction with the addition of surfactant during the hydrolysis of pretreated softwood. Appl Biochem Biotechnol 161(1–8):274–287CrossRef
36.
Zurück zum Zitat Kaar WE, Holtzapple M (1998) Benefits from Tween during enzymatic hydrolysis of corn stover. Biotechnol Bioeng 59(4):419–427CrossRef Kaar WE, Holtzapple M (1998) Benefits from Tween during enzymatic hydrolysis of corn stover. Biotechnol Bioeng 59(4):419–427CrossRef
37.
Zurück zum Zitat Alkasrawi M, Eriksson T, Börjesson J, Wingren A, Galbe M, Tjerneld F, Zacchi G (2003) The effect of Tween-20 on simultaneous saccharification and fermentation of softwood to ethanol. Enzym Microb Technol 33:71–78CrossRef Alkasrawi M, Eriksson T, Börjesson J, Wingren A, Galbe M, Tjerneld F, Zacchi G (2003) The effect of Tween-20 on simultaneous saccharification and fermentation of softwood to ethanol. Enzym Microb Technol 33:71–78CrossRef
38.
Zurück zum Zitat Eriksson T, Borjesson J, Tjerneld F (2002) Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzym Microb Technol 31:353–364CrossRef Eriksson T, Borjesson J, Tjerneld F (2002) Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzym Microb Technol 31:353–364CrossRef
39.
Zurück zum Zitat Park JW, Takahata Y, Kajiuchi T, Akehata T (1992) Effects of nonionic surfactant on enzymatic hydrolysis of used newspaper. Biotechnol Bioeng 39(1):117–120CrossRef Park JW, Takahata Y, Kajiuchi T, Akehata T (1992) Effects of nonionic surfactant on enzymatic hydrolysis of used newspaper. Biotechnol Bioeng 39(1):117–120CrossRef
40.
Zurück zum Zitat Olesen SN, Bohlin C, Murphy L, Borch K, McFarland KC, Sweeny MD, Westh P (2011) Effects of non-ionic surfactants on the interaction between cellulases and tannic acid: a model system for cellulase-polyphenol interactions. Enzym Microb Technol 49:353–359CrossRef Olesen SN, Bohlin C, Murphy L, Borch K, McFarland KC, Sweeny MD, Westh P (2011) Effects of non-ionic surfactants on the interaction between cellulases and tannic acid: a model system for cellulase-polyphenol interactions. Enzym Microb Technol 49:353–359CrossRef
41.
Zurück zum Zitat Singh R, Singh S, Trimukhe KD, Pandare KV, Bastawade KB, Gokhale DV, Varma AJ (2005) Lignin-carbohydrate complexes from sugarcane bagasse: preparation, purification, and characterization. Carbohydr Polym 62:57–66CrossRef Singh R, Singh S, Trimukhe KD, Pandare KV, Bastawade KB, Gokhale DV, Varma AJ (2005) Lignin-carbohydrate complexes from sugarcane bagasse: preparation, purification, and characterization. Carbohydr Polym 62:57–66CrossRef
42.
Zurück zum Zitat Ghaffar SH, Fan M (2013) Structural analysis for lignin characteristics. Biomass Bioenergy 57:264–279CrossRef Ghaffar SH, Fan M (2013) Structural analysis for lignin characteristics. Biomass Bioenergy 57:264–279CrossRef
43.
Zurück zum Zitat Studer MH, DeMartini JD, Davis MF, Sykes RW, Davison B, Keller M, Tuskan GA, Wyman CE (2011) Lignin content in natural Populus variants affects sugar release. Proc Natl Acad Sci U S A 108(15):6300–6305CrossRef Studer MH, DeMartini JD, Davis MF, Sykes RW, Davison B, Keller M, Tuskan GA, Wyman CE (2011) Lignin content in natural Populus variants affects sugar release. Proc Natl Acad Sci U S A 108(15):6300–6305CrossRef
44.
Zurück zum Zitat Zhoa XB, Wang L, Liu DH (2008) Peracetic acid pretreatment of sugarcane bagasse for enzymatic hydrolysis: a continued work. J Chem Technol Biotechnol 83:950–956CrossRef Zhoa XB, Wang L, Liu DH (2008) Peracetic acid pretreatment of sugarcane bagasse for enzymatic hydrolysis: a continued work. J Chem Technol Biotechnol 83:950–956CrossRef
45.
Zurück zum Zitat Santos RB, Hart PW, Jameel H, Chang HM (2013) Wood based lignin reactions important to the biorefinery and pulp and paper industries. Bioresources 8(1):1456–1477CrossRef Santos RB, Hart PW, Jameel H, Chang HM (2013) Wood based lignin reactions important to the biorefinery and pulp and paper industries. Bioresources 8(1):1456–1477CrossRef
46.
Zurück zum Zitat Li X, Ximenes E, Kim Y, Slininger M, Meilan R, Ladisch M, Chapple C (2010) Lignin monomer composition affects Arabidopsis cell-wall degradability after liquid hot water pretreatment. Biotechnol Biofuels 3 Li X, Ximenes E, Kim Y, Slininger M, Meilan R, Ladisch M, Chapple C (2010) Lignin monomer composition affects Arabidopsis cell-wall degradability after liquid hot water pretreatment. Biotechnol Biofuels 3
47.
Zurück zum Zitat Selig MJ, Viamajala S, Decker SR, Tucker MP, Himmel ME, Vinzant TB (2007) Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose. Biotechnol Prog 23(6):1333–1339CrossRef Selig MJ, Viamajala S, Decker SR, Tucker MP, Himmel ME, Vinzant TB (2007) Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose. Biotechnol Prog 23(6):1333–1339CrossRef
Metadaten
Titel
Pilot-scale pretreatments of sugarcane bagasse with steam explosion and mineral acid, organic acid, and mixed acids: synergies, enzymatic hydrolysis efficiencies, and structure-morphology correlations
verfasst von
Siddhartha Pal
Shereena Joy
Pramod Kumbhar
Kalpana D. Trimukhe
Rishi Gupta
Ramesh C. Kuhad
Anjani J. Varma
Sasisanker Padmanabhan
Publikationsdatum
07.09.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 2/2017
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-016-0220-z

Weitere Artikel der Ausgabe 2/2017

Biomass Conversion and Biorefinery 2/2017 Zur Ausgabe