Skip to main content

2024 | OriginalPaper | Buchkapitel

Plant Disease Prediction Using Deep Learning Techniques

verfasst von : Widaad Fayid Hulkury, Leckraj Nagowah

Erschienen in: Smart Mobile Communication & Artificial Intelligence

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With the rising importance of agriculture in ensuring food security, early disease detection is crucial to mitigate yield losses and economic impacts caused by crop diseases. In this paper, a lightweight mobile application, BotaniCare, is presented which aims at revolutionizing agricultural practices by using deep learning techniques to accurately detect and diagnose diseases in plants. The system has been trained on a dataset of images of both healthy plants and those affected by various diseases. Through the implementation of the model, the system could recognize patterns and anomalies in plant health, enabling precise identification of plant diseases with minimal human intervention. The mobile application also included remedial actions to health the plants from the identified disease. The development of the plant disease prediction system involved data collection, pre-processing, model selection, testing and evaluation. The model was trained on labeled data and evaluated using appropriate metrics to ensure the reliability of the model. Different CNN architectures were compared and evaluated to be able to choose the most suitable one. By using transfer learning, MobileNetV2 was used in BotaniCare and a training accuracy of 98.7% and a validation accuracy of 96.4% was achieved during the model development and evaluation process. BotaniCare was thoroughly assessed using real-life images and validated against expert diagnosis, demonstrating its high accuracy and reliability in disease prediction. It is anticipated that the mobile application will be widely used by farmers in Mauritius to identify the frequent diseases of the common plants and apply appropriate remedial actions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Jasim, M.A., AL-Tuwaijari, J.M.: Plant leaf diseases detection and classification using image processing and deep learning techniques. In: 2020 International Conference on Computer Science and Software Engineering (CSASE) (2020) Jasim, M.A., AL-Tuwaijari, J.M.: Plant leaf diseases detection and classification using image processing and deep learning techniques. In: 2020 International Conference on Computer Science and Software Engineering (CSASE) (2020)
2.
Zurück zum Zitat Simhadri, C.G., Kondaveeti, H.K.: Automatic recognition of rice leaf diseases using transfer learning. Agronomy 13(4), 961 (2023)CrossRef Simhadri, C.G., Kondaveeti, H.K.: Automatic recognition of rice leaf diseases using transfer learning. Agronomy 13(4), 961 (2023)CrossRef
3.
Zurück zum Zitat Mohanty, S.P., Hughes, D.P., Salathé, M.: Using deep learning for image-based plant disease detection. Front. Plant Sci. 7, 1419 (2016)CrossRef Mohanty, S.P., Hughes, D.P., Salathé, M.: Using deep learning for image-based plant disease detection. Front. Plant Sci. 7, 1419 (2016)CrossRef
4.
Zurück zum Zitat Pani, S., Rout, J., Afroz, Z., Dey, M., Sahoo, M.K., Das, A.K.: Diagnosis of plant diseases by image processing model for sustainable solutions. In: Mohanty, S.N., Diaz, V.G., Satish Kumar, G.A.E. (eds.) Intelligent Systems and Machine Learning: First EAI International Conference, ICISML 2022, Hyderabad, India, December 16-17, 2022, Proceedings, Part II, pp. 181–192. Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-35081-8_15CrossRef Pani, S., Rout, J., Afroz, Z., Dey, M., Sahoo, M.K., Das, A.K.: Diagnosis of plant diseases by image processing model for sustainable solutions. In: Mohanty, S.N., Diaz, V.G., Satish Kumar, G.A.E. (eds.) Intelligent Systems and Machine Learning: First EAI International Conference, ICISML 2022, Hyderabad, India, December 16-17, 2022, Proceedings, Part II, pp. 181–192. Springer Nature Switzerland, Cham (2023). https://​doi.​org/​10.​1007/​978-3-031-35081-8_​15CrossRef
5.
Zurück zum Zitat Bhujel, A., et al.: Detection of gray mold disease and its severity on strawberry using deep learning networks. J. Plant Dis. Prot. 129(3), 579–592 (2022)CrossRef Bhujel, A., et al.: Detection of gray mold disease and its severity on strawberry using deep learning networks. J. Plant Dis. Prot. 129(3), 579–592 (2022)CrossRef
6.
Zurück zum Zitat Pandhare, N., Panchal, V., Mishra, S.S., Tambe, M.D.: Cotton plant disease detection using deep learning. Int. Res. J. Modern. Eng. Technol. Sci 4(04) (2022) Pandhare, N., Panchal, V., Mishra, S.S., Tambe, M.D.: Cotton plant disease detection using deep learning. Int. Res. J. Modern. Eng. Technol. Sci 4(04) (2022)
7.
Zurück zum Zitat Rautaray, S.S., Pandey, M., Gourisaria, M.K., Sharma, R., Das, S.: Paddy crop disease prediction - a transfer learning technique. Int. J. Recent Technol. Eng. 8(6), 1490–1495 (2020) Rautaray, S.S., Pandey, M., Gourisaria, M.K., Sharma, R., Das, S.: Paddy crop disease prediction - a transfer learning technique. Int. J. Recent Technol. Eng. 8(6), 1490–1495 (2020)
8.
Zurück zum Zitat Karnik, J., Suthar, A.: Agricultural plant leaf disease detection using Deep Learning Techniques. SSRN Electron. J. (2021) Karnik, J., Suthar, A.: Agricultural plant leaf disease detection using Deep Learning Techniques. SSRN Electron. J. (2021)
9.
Zurück zum Zitat Militante, S.V., Gerardo, B.D., Dionisio, N.V.: Plant Leaf Detection and disease recognition using Deep Learning. In: 2019 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE) (2019) Militante, S.V., Gerardo, B.D., Dionisio, N.V.: Plant Leaf Detection and disease recognition using Deep Learning. In: 2019 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE) (2019)
10.
Zurück zum Zitat Gayathri, S., Wise, D.J.W., Shamini, P.B., Muthukumaran, N.: Image analysis and detection of tea leaf disease using deep learning. In 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC), pp. 398–403. IEEE (2020) Gayathri, S., Wise, D.J.W., Shamini, P.B., Muthukumaran, N.: Image analysis and detection of tea leaf disease using deep learning. In 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC), pp. 398–403. IEEE (2020)
11.
Zurück zum Zitat Chohan, M., Khan, A., Chohan, R., Katpar, S.H., Mahar, M.S.: Plant disease detection using deep learning. Int. J. Recent Technol. Eng. 9(1), 909–914 (2020) Chohan, M., Khan, A., Chohan, R., Katpar, S.H., Mahar, M.S.: Plant disease detection using deep learning. Int. J. Recent Technol. Eng. 9(1), 909–914 (2020)
12.
Zurück zum Zitat Zaw, K.K., Myo, Z.M.M., Thoung, D.T.H.: Support vector machine based classification of leaf diseases. Int. J. Sci. Eng. Appl. 7, 143–147 (2018) Zaw, K.K., Myo, Z.M.M., Thoung, D.T.H.: Support vector machine based classification of leaf diseases. Int. J. Sci. Eng. Appl. 7, 143–147 (2018)
13.
Zurück zum Zitat Krishnamoorthy, N., Prasad, L.N., Kumar, C.P., Subedi, B., Abraha, H.B., Sathishkumar, V.E.: Rice leaf diseases prediction using deep neural networks with transfer learning. Environ. Res. 198, 111275 (2021)CrossRef Krishnamoorthy, N., Prasad, L.N., Kumar, C.P., Subedi, B., Abraha, H.B., Sathishkumar, V.E.: Rice leaf diseases prediction using deep neural networks with transfer learning. Environ. Res. 198, 111275 (2021)CrossRef
14.
Zurück zum Zitat Ibrahim, D.A.W., Atya, D.B.: Detection of diseases in rice leaf using Deep Learning and Machine Learning Techniques. Webology 19(1), 1493–1503 (2022)CrossRef Ibrahim, D.A.W., Atya, D.B.: Detection of diseases in rice leaf using Deep Learning and Machine Learning Techniques. Webology 19(1), 1493–1503 (2022)CrossRef
15.
Zurück zum Zitat Chen, J., Chen, J., Zhang, D., Sun, Y., Nanehkaran, Y.: A. Using deep transfer learning for image-based plant disease identification. Comp. Electron. Agric. (2020) Chen, J., Chen, J., Zhang, D., Sun, Y., Nanehkaran, Y.: A. Using deep transfer learning for image-based plant disease identification. Comp. Electron. Agric. (2020)
16.
Zurück zum Zitat Kulkarni, P., Karwande, A., Kolhe, T., Kamble, S., Joshi, A., Wyawahare, M.: Plant disease detection using image processing and machine learning. arXiv preprint arXiv:2106.10698 (2021) Kulkarni, P., Karwande, A., Kolhe, T., Kamble, S., Joshi, A., Wyawahare, M.: Plant disease detection using image processing and machine learning. arXiv preprint arXiv:​2106.​10698 (2021)
Metadaten
Titel
Plant Disease Prediction Using Deep Learning Techniques
verfasst von
Widaad Fayid Hulkury
Leckraj Nagowah
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-56075-0_24