Skip to main content
Erschienen in: Cellulose 2/2022

22.01.2022 | Review Paper

Plasma-treated lignocellulosic fibers for polymer reinforcement. A review

verfasst von: Francisco Javier Alonso-Montemayor, Dámaso Navarro-Rodríguez, Marc Delgado-Aguilar, María Guadalupe Neira-Velázquez, Cristóbal Noé Aguilar, Adalí Oliva Castañeda-Facio, Yadira Karina Reyes-Acosta, Rosa Idalia Narro-Céspedes

Erschienen in: Cellulose | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Concerns on environmental issues are motivating the development of biodegradable materials and the use of sustainable processes. Among the most abundant biodegradable materials are lignocellulosic fibers, which could have widespread use as reinforcing fibers in polymer composites. On the other hand, cold plasma treatment is a sustainable process which is lately gaining great interest for the surface treatment of lignocellulosic fibers aimed at improving the mechanical properties of polymers. Despite such great interest, polymers reinforced with plasma-treated lignocellulosic fibers (PRPLF) remain unknown for most industries manufacturing polymer composites. This review summarizes published studies on PRPLF and discusses the effect of plasma treatment of lignocellulosic fibers on the mechanical properties of PRPLF. The interfacial shear strength, tensile and flexural strength, and stiffness of a variety of PRPLF composites are presented and compared in data tables. Additionally, the tensile strength and stiffness of some plasma-treated lignocellulosic fibers are compared in a data table. Finally, the use of micromechanical models is encouraged to estimate the micromechanical properties of PRPLF.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alonso-Montemayor FJ, Narro-Céspedes RI, Castañeda-Facio AO (2017) Efectos de la modificación superficial por plasma en fibras lignocelulósicas y su aplicación. J BioProcess Chem Technol 9(18):21–26 Alonso-Montemayor FJ, Narro-Céspedes RI, Castañeda-Facio AO (2017) Efectos de la modificación superficial por plasma en fibras lignocelulósicas y su aplicación. J BioProcess Chem Technol 9(18):21–26
Zurück zum Zitat Alonso-Montemayor FJ, López-Badillo CM, Aguilar CN, Ávalos-Belmontes F, Castañeda-Facio AO, Reyna-Martínez R, Neira-Velázquez MG, Soria-Argüello G, Navarro-Rodríguez D, Delgado-Aguilar M, Narro-Céspedes RI (2020a) Effect of cold air plasma on the morphology and thermal stability of bleached hemp fibers. Rev Mex Ing Quim 19(1): 457–467. https://doi.org/10.24275/rmiq/Mat1510 Alonso-Montemayor FJ, López-Badillo CM, Aguilar CN, Ávalos-Belmontes F, Castañeda-Facio AO, Reyna-Martínez R, Neira-Velázquez MG, Soria-Argüello G, Navarro-Rodríguez D, Delgado-Aguilar M, Narro-Céspedes RI (2020a) Effect of cold air plasma on the morphology and thermal stability of bleached hemp fibers. Rev Mex Ing Quim 19(1): 457–467. https://​doi.​org/​10.​24275/​rmiq/​Mat1510
Zurück zum Zitat Baltazar-y-Jimenez A, Juntaro J, Bismarck A (2008b) Effect of atmospheric air pressure plasma treatment on the thermal behaviour of natural fibres and dynamical mechanical properties of randomly-oriented short fibre composites. J Biobased Mater Bioenergy 2(3):264–272. https://doi.org/10.1166/jbmb.2008.410CrossRef Baltazar-y-Jimenez A, Juntaro J, Bismarck A (2008b) Effect of atmospheric air pressure plasma treatment on the thermal behaviour of natural fibres and dynamical mechanical properties of randomly-oriented short fibre composites. J Biobased Mater Bioenergy 2(3):264–272. https://​doi.​org/​10.​1166/​jbmb.​2008.​410CrossRef
Zurück zum Zitat Bozaci E, Sever K, Demir A, Seki Y, Sarikanat M, Ozdogan E (2009) Effect of the atmospheric plasma treatment parameters on surface and mechanical properties of jute fabric. Fibers Polym 10(6):781–786. doi 10.1007%2Fs12221-009-0781-6 Bozaci E, Sever K, Demir A, Seki Y, Sarikanat M, Ozdogan E (2009) Effect of the atmospheric plasma treatment parameters on surface and mechanical properties of jute fabric. Fibers Polym 10(6):781–786. doi 10.1007%2Fs12221-009-0781-6
Zurück zum Zitat Castellón MC, Navas-Martos FJ, Pacheco R, Morales-Cid G, Sánchez S, La Rubia MD (2017) Fabricación y caracterización de composites de ácido poliláctico reforzados con madera de olivo. Afinidad 74(580): 267–274 Castellón MC, Navas-Martos FJ, Pacheco R, Morales-Cid G, Sánchez S, La Rubia MD (2017) Fabricación y caracterización de composites de ácido poliláctico reforzados con madera de olivo. Afinidad 74(580): 267–274
Zurück zum Zitat Cho D, Kim H-J, Drzal LT (2013) Surface treatment and characterization of natural fibers: effects on the properties of biocomposites. In: Sabu T, Kuruvilla J, Malhotra SK, Koichi G, Sreekala MS (eds) Polymer composites. Wiley, New York, pp 133–177. https://doi.org/10.1002/9783527674220 Cho D, Kim H-J, Drzal LT (2013) Surface treatment and characterization of natural fibers: effects on the properties of biocomposites. In: Sabu T, Kuruvilla J, Malhotra SK, Koichi G, Sreekala MS (eds) Polymer composites. Wiley, New York, pp 133–177. https://​doi.​org/​10.​1002/​9783527674220
Zurück zum Zitat Compton KT, Langmuir I (1930) Electrical discharges in gases. Part I. Survey of fundamental processes. Rev Mod Phys 2(2):123–242CrossRef Compton KT, Langmuir I (1930) Electrical discharges in gases. Part I. Survey of fundamental processes. Rev Mod Phys 2(2):123–242CrossRef
Zurück zum Zitat Corral FS, Nava LAC, Hernández EH, Gámez JFH, Neira-Velázquez MG, Sierra MIM, Morones PG, Gómez REDD (2016) Plasma treatment of Agave fiber powder and its effect on the mechanical and thermal properties of composites based on polyethylene. Int J Polym Sci 2016:1–7. https://doi.org/10.1155/2016/2807915CrossRef Corral FS, Nava LAC, Hernández EH, Gámez JFH, Neira-Velázquez MG, Sierra MIM, Morones PG, Gómez REDD (2016) Plasma treatment of Agave fiber powder and its effect on the mechanical and thermal properties of composites based on polyethylene. Int J Polym Sci 2016:1–7. https://​doi.​org/​10.​1155/​2016/​2807915CrossRef
Zurück zum Zitat Huner U, Gulec HA, Damar Huner I (2017) Effect of gas type and application distance on atmospheric pressure plasma jet-treated flax composites. J Reinf Plast Compos 36(17):1197–1210. doi 10.1177%2F0731684417703490 Huner U, Gulec HA, Damar Huner I (2017) Effect of gas type and application distance on atmospheric pressure plasma jet-treated flax composites. J Reinf Plast Compos 36(17):1197–1210. doi 10.1177%2F0731684417703490
Zurück zum Zitat Langmuir I (1929) The interaction of electron and positive ion space charges in cathode sheaths. Phys Rev 33(6):140–175CrossRef Langmuir I (1929) The interaction of electron and positive ion space charges in cathode sheaths. Phys Rev 33(6):140–175CrossRef
Zurück zum Zitat Latif R, Wakeel S, Zaman Khan N, Noor Siddiquee A, Lal Verma S, Akhtar Khan Z (2019) Surface treatments of plant fibers and their effects on mechanical properties of fiber-reinforced composites: a review. J Reinf Plast Compos 38(1):15–30. doi 10.1177%2F0731684418802022 Latif R, Wakeel S, Zaman Khan N, Noor Siddiquee A, Lal Verma S, Akhtar Khan Z (2019) Surface treatments of plant fibers and their effects on mechanical properties of fiber-reinforced composites: a review. J Reinf Plast Compos 38(1):15–30. doi 10.1177%2F0731684418802022
Zurück zum Zitat López JP, Mutjé P, Pèlach Serra MÀ, El Mansouri NE, Boufi S, Vilaseca Morera F (2012) Analysis of the tensile modulus of polypropylene composites reinforced with stone groundwood fibers. BioResources 7(1):1310–1323 López JP, Mutjé P, Pèlach Serra MÀ, El Mansouri NE, Boufi S, Vilaseca Morera F (2012) Analysis of the tensile modulus of polypropylene composites reinforced with stone groundwood fibers. BioResources 7(1):1310–1323
Zurück zum Zitat Martín del Campo AS, Robledo-Ortiz JR, Arellano M, Jasso-Gastinel CF, Silva-Jara JM, López-Naranjo EJ, Pérez-Fonseca AA (2020) Glycidyl methacrylate as compatibilizer of poly(lactic acid)/nanoclay/agave fiber hybrid biocomposites: effect on the physical and mechanical properties. Rev Mex Ing Quim 19(1): 455–469. https://doi.org/10.24275/rmiq/Mat627 Martín del Campo AS, Robledo-Ortiz JR, Arellano M, Jasso-Gastinel CF, Silva-Jara JM, López-Naranjo EJ, Pérez-Fonseca AA (2020) Glycidyl methacrylate as compatibilizer of poly(lactic acid)/nanoclay/agave fiber hybrid biocomposites: effect on the physical and mechanical properties. Rev Mex Ing Quim 19(1): 455–469. https://​doi.​org/​10.​24275/​rmiq/​Mat627
Zurück zum Zitat Morales-Zamora M, González-Suárez E, Mesa-Garriga L (2016) Avances en la obtención de tableros de fibras a partir de mezclas de residuales lignocelulósicos de bagazo. Afinidad 73(575): 205–209 Morales-Zamora M, González-Suárez E, Mesa-Garriga L (2016) Avances en la obtención de tableros de fibras a partir de mezclas de residuales lignocelulósicos de bagazo. Afinidad 73(575): 205–209
Zurück zum Zitat Mukhopadhyay S, Fangueiro R (2009) Physical modification of natural fibers and thermoplastic films for composites — A review. J Thermoplast Compos Mater 22(2): 135–162. doi 10.1177%2F0892705708091860 Mukhopadhyay S, Fangueiro R (2009) Physical modification of natural fibers and thermoplastic films for composites — A review. J Thermoplast Compos Mater 22(2): 135–162. doi 10.1177%2F0892705708091860
Zurück zum Zitat Narro-Céspedes RI, Neira-Velázquez MG, Mora-Cortes LF, Hernández-Hernández E, Castañeda-Facio AO, Ibarra-Alonso MC, Reyes-Acosta YK, Soria-Arguello G, Borjas-Ramos JJ (2018) Surface modification of sodium montmorillonite nanoclay by plasma polymerization and its effect on the properties of polystyrene nanocomposites. J Nanomater 2018:2480798. https://doi.org/10.1155/2018/2480798CrossRef Narro-Céspedes RI, Neira-Velázquez MG, Mora-Cortes LF, Hernández-Hernández E, Castañeda-Facio AO, Ibarra-Alonso MC, Reyes-Acosta YK, Soria-Arguello G, Borjas-Ramos JJ (2018) Surface modification of sodium montmorillonite nanoclay by plasma polymerization and its effect on the properties of polystyrene nanocomposites. J Nanomater 2018:2480798. https://​doi.​org/​10.​1155/​2018/​2480798CrossRef
Zurück zum Zitat Narro-Céspedes RI, Hernández Gámez JF, Neira-Velázquez MG, Ávalos Belmontes F, Díaz de León RE, Rodríguez-Fernández OS, Avila Orta CA, Hernández Hernández E (2014) Thermoplastic elastomers based on high‐density polyethylene, ethylene–propylene–diene terpolymer, and ground tire rubber dynamically vulcanized with dicumyl peroxide. J Appl Polym Sci 131(4). https://doi.org/10.1002/app.39901 Narro-Céspedes RI, Hernández Gámez JF, Neira-Velázquez MG, Ávalos Belmontes F, Díaz de León RE, Rodríguez-Fernández OS, Avila Orta CA, Hernández Hernández E (2014) Thermoplastic elastomers based on high‐density polyethylene, ethylene–propylene–diene terpolymer, and ground tire rubber dynamically vulcanized with dicumyl peroxide. J Appl Polym Sci 131(4). https://​doi.​org/​10.​1002/​app.​39901
Zurück zum Zitat Neira-Velázquez MG, Hernández-Hernández E, Ramos-deValle LF, Ávila-Orta CA, Perera-Mercado YA, Solís-Rosales SG, González-Morones P, Ponce-Pedraza A, Ávalos-Borja M, Narro-Cáspedes RI, Bartolo-Pérez P (2013) Chemical modification of carbon nanofibers with plasma of acrylic acid. Plasma Process Polym 10(7):627–633. https://doi.org/10.1002/ppap.201200122CrossRef Neira-Velázquez MG, Hernández-Hernández E, Ramos-deValle LF, Ávila-Orta CA, Perera-Mercado YA, Solís-Rosales SG, González-Morones P, Ponce-Pedraza A, Ávalos-Borja M, Narro-Cáspedes RI, Bartolo-Pérez P (2013) Chemical modification of carbon nanofibers with plasma of acrylic acid. Plasma Process Polym 10(7):627–633. https://​doi.​org/​10.​1002/​ppap.​201200122CrossRef
Zurück zum Zitat Neira-Velázquez MG, Borjas-Ramos JJ, Hernández-Hernández E, Hernández-Ramos CG, Narro-Céspedes RI, Hernández-Gámez JF, Ramos de Valle LF (2015) Nanocomposites prepared with high density polyethylene and carbon nanofibers modified by ethylene plasma. Plasma Process Polym 12(5):477–485. https://doi.org/10.1002/ppap.201400065CrossRef Neira-Velázquez MG, Borjas-Ramos JJ, Hernández-Hernández E, Hernández-Ramos CG, Narro-Céspedes RI, Hernández-Gámez JF, Ramos de Valle LF (2015) Nanocomposites prepared with high density polyethylene and carbon nanofibers modified by ethylene plasma. Plasma Process Polym 12(5):477–485. https://​doi.​org/​10.​1002/​ppap.​201400065CrossRef
Zurück zum Zitat Olaru N, Olaru I, Cobiliac GH (2005) Plasma modified wood fibers as fillers in polymeric materials. Rom J Phys 50(9–10):1095–1101 Olaru N, Olaru I, Cobiliac GH (2005) Plasma modified wood fibers as fillers in polymeric materials. Rom J Phys 50(9–10):1095–1101
Zurück zum Zitat Pinos A, Braulio J (2019) Modificación de la celulosa obtenida de la fibra de banano para el uso de polímeros biodegradables. Afinidad 76(585):45–51 Pinos A, Braulio J (2019) Modificación de la celulosa obtenida de la fibra de banano para el uso de polímeros biodegradables. Afinidad 76(585):45–51
Zurück zum Zitat Seghini MC, Touchard F, Sarasini F, Chocinski-Arnault L, Tirillo J, Bracciale MP, Zvonek M, Cech V (2020) Effects of oxygen and tetravinylsilane plasma treatments on mechanical and interfacial properties of flax yarns in thermoset matrix composites. Cellulose 27:511–530. https://doi.org/10.1007/s10570-019-02785-3CrossRef Seghini MC, Touchard F, Sarasini F, Chocinski-Arnault L, Tirillo J, Bracciale MP, Zvonek M, Cech V (2020) Effects of oxygen and tetravinylsilane plasma treatments on mechanical and interfacial properties of flax yarns in thermoset matrix composites. Cellulose 27:511–530. https://​doi.​org/​10.​1007/​s10570-019-02785-3CrossRef
Zurück zum Zitat Sinha E (2009) Effect of cold plasma treatment on macromolecular structure, thermal and mechanical behavior of jute fiber. J Ind Text 38(4):317–339. doi 10.1177%2F1528083708093334 Sinha E (2009) Effect of cold plasma treatment on macromolecular structure, thermal and mechanical behavior of jute fiber. J Ind Text 38(4):317–339. doi 10.1177%2F1528083708093334
Zurück zum Zitat Sinha E, Panigrahi S (2009) Effect of plasma treatment on structure, wettability of jute fiber and flexural strength of its composite. J Compos Mater 43(17):1791–1802. doi 10.1177%2F0021998309338078 Sinha E, Panigrahi S (2009) Effect of plasma treatment on structure, wettability of jute fiber and flexural strength of its composite. J Compos Mater 43(17):1791–1802. doi 10.1177%2F0021998309338078
Zurück zum Zitat Tanasă F, Zănoagă M, Teacă CA, Nechifor M, Shahzad A (2020) Modified hemp fibers intended for fiber-reinforced polymer composites used in structural applications—a review. I. Methods of modification. Polym Compos 41(1):5–31. https://doi.org/10.1002/pc.25354CrossRef Tanasă F, Zănoagă M, Teacă CA, Nechifor M, Shahzad A (2020) Modified hemp fibers intended for fiber-reinforced polymer composites used in structural applications—a review. I. Methods of modification. Polym Compos 41(1):5–31. https://​doi.​org/​10.​1002/​pc.​25354CrossRef
Zurück zum Zitat Tonks L, Langmuir I (1929) A general theory of the plasma of an arc. Phys Rev 34(6):876–922CrossRef Tonks L, Langmuir I (1929) A general theory of the plasma of an arc. Phys Rev 34(6):876–922CrossRef
Zurück zum Zitat Valášek P, Müller M, Šleger V (2017) Influence of plasma treatment on mechanical properties of cellulose-based fibres and their interfacial interaction in composite systems. BioResources 12(3):5449–5461CrossRef Valášek P, Müller M, Šleger V (2017) Influence of plasma treatment on mechanical properties of cellulose-based fibres and their interfacial interaction in composite systems. BioResources 12(3):5449–5461CrossRef
Zurück zum Zitat Woigk W, Rion J, Hegemann D, Fuentes C, Van Vuure AW, Masania K, Dransfeld C (2016) Mechanical properties of tough plasma treated flax fibre thermoplastic composites. In: ECCM 2016—proceedings of the 17th European conference on composites material. https://lirias.kuleuven.be/1579792?limo=0 Woigk W, Rion J, Hegemann D, Fuentes C, Van Vuure AW, Masania K, Dransfeld C (2016) Mechanical properties of tough plasma treated flax fibre thermoplastic composites. In: ECCM 2016—proceedings of the 17th European conference on composites material. https://​lirias.​kuleuven.​be/​1579792?​limo=​0
Zurück zum Zitat Xu Y, Chen M, Zhou X (2017) Improvement of the bondability of wheat straw treated by water vapor plasma for bio-composites manufacture. BioResources 12(1):1403–1416 Xu Y, Chen M, Zhou X (2017) Improvement of the bondability of wheat straw treated by water vapor plasma for bio-composites manufacture. BioResources 12(1):1403–1416
Zurück zum Zitat Zanini S, Canevali C, Orlandi M, Tolpa E-L, Zoia L, Riccardi C, Morazzoni F (2008) Radical formation on CTMP fibers by argon plasma treatments and related lignin chemical changes. BioResources 3(4):995–1009 Zanini S, Canevali C, Orlandi M, Tolpa E-L, Zoia L, Riccardi C, Morazzoni F (2008) Radical formation on CTMP fibers by argon plasma treatments and related lignin chemical changes. BioResources 3(4):995–1009
Zurück zum Zitat Zendejo-Covarrubias R, Narro-Cespedes RI, Neira-Velázquez G, Cruz-Delgado VJ, Ku-Herrera JJ, Borjas-Ramos J, Borjas-Ramos J, Arias-García G, Soria-Arguello G (2018) Surface modification of graphene nanoparticles with ethylene plasma in rotary plasma reactor for the preparation of GnP/HDPE nanocomposites. IEEE Trans Plasma Sci 46(7):2402–2406. https://doi.org/10.1109/TPS.2018.2823585CrossRef Zendejo-Covarrubias R, Narro-Cespedes RI, Neira-Velázquez G, Cruz-Delgado VJ, Ku-Herrera JJ, Borjas-Ramos J, Borjas-Ramos J, Arias-García G, Soria-Arguello G (2018) Surface modification of graphene nanoparticles with ethylene plasma in rotary plasma reactor for the preparation of GnP/HDPE nanocomposites. IEEE Trans Plasma Sci 46(7):2402–2406. https://​doi.​org/​10.​1109/​TPS.​2018.​2823585CrossRef
Metadaten
Titel
Plasma-treated lignocellulosic fibers for polymer reinforcement. A review
verfasst von
Francisco Javier Alonso-Montemayor
Dámaso Navarro-Rodríguez
Marc Delgado-Aguilar
María Guadalupe Neira-Velázquez
Cristóbal Noé Aguilar
Adalí Oliva Castañeda-Facio
Yadira Karina Reyes-Acosta
Rosa Idalia Narro-Céspedes
Publikationsdatum
22.01.2022
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 2/2022
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-021-04361-0

Weitere Artikel der Ausgabe 2/2022

Cellulose 2/2022 Zur Ausgabe