Skip to main content
Erschienen in:
Buchtitelbild

2020 | OriginalPaper | Buchkapitel

Plasmonic Photonic Crystal Fibers

verfasst von : Dora Juan Juan Hu, Aaron Ho-Pui Ho

Erschienen in: Advanced Fiber Sensing Technologies

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Surface plasmon waves are coupled electron–photon modes at the metal–dielectric interface. They can significantly enhance light–matter interactions that are favorable in many applications including nanophotonics, data storage, microscopy, solar cells, and sensing. Compared with the prism-based coupling configuration, optical fiber-based plasmonic devices offer more compact and robust configuration for exciting the plasmon modes. Photonic crystal fibers (PCFs) are a special class of optical fibers in which the presence of holey structures or periodic microstructures of refractive index modulations can provide a wide scope of flexibility in the control and engineering of the optical properties, thus opening up the potential for many new applications and scientific explorations. Notably, PCFs are a desirable platform to incorporate plasmonic structures for the excitation of surface plasmon resonance (SPR) and localized surface plasmon resonance (LSPR). Three main types of plasmonic PCF structures have been developed and reported in the literature, including metal nano-/microwire-filled plasmonic PCF, metal-coated plasmonic PCF, and nanoparticle-deposited/filled plasmonic PCF. This chapter provides a comprehensive review on the recent progress of these reported plasmonic PCF structures in terms of design and applications. Firstly, the operating principles based on surface plasmon polaritons and localized surface plasmon polaritons are presented. Secondly, the experimental studies of plasmonic PCF structures for various application areas are reviewed, including refractive index sensing, biosensing, temperature sensing, polarization, and birefringent devices. Lastly, design considerations and challenges are discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat A. Amezcua-Correa, J. Yang, C.E. Finlayson, A.C. Peacor, J. Hayes, P.J. Sazio, S.M. Howdle, Surface-enhanced Raman scattering using microstructured optical fiber substrates. Adv. Func. Mater. 17, 2024–2030 (2007)CrossRef A. Amezcua-Correa, J. Yang, C.E. Finlayson, A.C. Peacor, J. Hayes, P.J. Sazio, S.M. Howdle, Surface-enhanced Raman scattering using microstructured optical fiber substrates. Adv. Func. Mater. 17, 2024–2030 (2007)CrossRef
Zurück zum Zitat J. Boehm, A. Francois, H. Ebendorff-Heidepriem, T.M. Monro, Chemical deposition of silver for the fabrication of surface plasmon microstructured optical fibre sensors. Plasmonics 6, 133–136 (2011)CrossRef J. Boehm, A. Francois, H. Ebendorff-Heidepriem, T.M. Monro, Chemical deposition of silver for the fabrication of surface plasmon microstructured optical fibre sensors. Plasmonics 6, 133–136 (2011)CrossRef
Zurück zum Zitat K. Chen, X. Zhou, X. Cheng, R. Qiao, Y. Cheng, C. Liu et al., Graphene photonic crystal fibre with strong and tunable light–matter interaction. Nat. Photonics 13(11), 754–759 (2019) K. Chen, X. Zhou, X. Cheng, R. Qiao, Y. Cheng, C. Liu et al., Graphene photonic crystal fibre with strong and tunable light–matter interaction. Nat. Photonics 13(11), 754–759 (2019)
Zurück zum Zitat M.-H. Chiu, C.-H. Shih, M.-H. Chi, Optimum sensitivity of single-mode D-type optical fiber sensor in the intensity measurement. Sens. Actuators B 123(2), 1120 (2007)CrossRef M.-H. Chiu, C.-H. Shih, M.-H. Chi, Optimum sensitivity of single-mode D-type optical fiber sensor in the intensity measurement. Sens. Actuators B 123(2), 1120 (2007)CrossRef
Zurück zum Zitat L. Coelho, J.M. de Almeida, J.L. Santos, R.A. Ferreira, P.S. André, D. Viegas, Sensing structure based on surface plasmon resonance in chemically etched single mode optical fibres. Plasmonics 10(2), 319 (2015)CrossRef L. Coelho, J.M. de Almeida, J.L. Santos, R.A. Ferreira, P.S. André, D. Viegas, Sensing structure based on surface plasmon resonance in chemically etched single mode optical fibres. Plasmonics 10(2), 319 (2015)CrossRef
Zurück zum Zitat A. Csaki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, W. Fritzsche, Nanoparticle layer deposition for plasmonic tuning of microstructured optical fibers. Small 6(22), 2584–2589 (2010)CrossRef A. Csaki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, W. Fritzsche, Nanoparticle layer deposition for plasmonic tuning of microstructured optical fibers. Small 6(22), 2584–2589 (2010)CrossRef
Zurück zum Zitat B. Debord, F. Amrani, L. Vincetti, F. Gérôme, F. Benabid, Hollow-core fiber technology: the rising of “gas photonics”. Fibers 7(2), 16 (2019)CrossRef B. Debord, F. Amrani, L. Vincetti, F. Gérôme, F. Benabid, Hollow-core fiber technology: the rising of “gas photonics”. Fibers 7(2), 16 (2019)CrossRef
Zurück zum Zitat U.S. Dinish, C.Y. Fu, K.S. Soh, R. Bhuvaneswari, A. Kumar, M. Olivo, Highly sensitive SERS detection of cancer proteins in low sample volume using hollow core photonic crystal fiber. Biosens. Bioelectron. 33, 293–298 (2012)CrossRef U.S. Dinish, C.Y. Fu, K.S. Soh, R. Bhuvaneswari, A. Kumar, M. Olivo, Highly sensitive SERS detection of cancer proteins in low sample volume using hollow core photonic crystal fiber. Biosens. Bioelectron. 33, 293–298 (2012)CrossRef
Zurück zum Zitat U.S. Dinish, G. Balasundara, Y.T. Chang, M. Olivo, Sensitive multiplex detection of serological liver cancer biomarkers using SERS-active photonic crystal fiber probe. J. Biophotonics 7(11–12), 956–965 (2014)CrossRef U.S. Dinish, G. Balasundara, Y.T. Chang, M. Olivo, Sensitive multiplex detection of serological liver cancer biomarkers using SERS-active photonic crystal fiber probe. J. Biophotonics 7(11–12), 956–965 (2014)CrossRef
Zurück zum Zitat S. Ertman, P. Lesiak, T.R. Woliński, Optofluidic photonic crystal fiber-based sensors. J. Lightwave Technol. 35(16), 3399–3405 (2017)ADSCrossRef S. Ertman, P. Lesiak, T.R. Woliński, Optofluidic photonic crystal fiber-based sensors. J. Lightwave Technol. 35(16), 3399–3405 (2017)ADSCrossRef
Zurück zum Zitat J. Homola, Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108, 462–493 (2008)CrossRef J. Homola, Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108, 462–493 (2008)CrossRef
Zurück zum Zitat D.J. Hu, H.P. Ho, Recent advances in plasmonic photonic crystal fibers: design, fabrication and applications. Adv. Opt. Photonics 9(2), 257–314 (2017)ADSCrossRef D.J. Hu, H.P. Ho, Recent advances in plasmonic photonic crystal fibers: design, fabrication and applications. Adv. Opt. Photonics 9(2), 257–314 (2017)ADSCrossRef
Zurück zum Zitat D.J. Hu, J.L. Lim, Y. Cui, K. Milenko, Y. Wang, P.P. Shum, T. Wolinski, Fabrication and characterization of a highly temperature sensitive device based on nematic liquid crystal-filled photonic crystal fiber. IEEE Photonics J. 4(5), 1248–1255 (2012)ADSCrossRef D.J. Hu, J.L. Lim, Y. Cui, K. Milenko, Y. Wang, P.P. Shum, T. Wolinski, Fabrication and characterization of a highly temperature sensitive device based on nematic liquid crystal-filled photonic crystal fiber. IEEE Photonics J. 4(5), 1248–1255 (2012)ADSCrossRef
Zurück zum Zitat D.J. Hu, R.Y.-N. Wong, P.P. Shum, Photonic crystal fiber–based interferometric sensors, in Selected Topics on Optical Fiber Technologies and Applications (Intech, London, 2018), pp. 21–41 D.J. Hu, R.Y.-N. Wong, P.P. Shum, Photonic crystal fiber–based interferometric sensors, in Selected Topics on Optical Fiber Technologies and Applications (Intech, London, 2018), pp. 21–41
Zurück zum Zitat D.J. Hu, Z. Xu, P.P. Shum, Review on photonic crystal fibers with hybrid guiding mechanisms. IEEE Access 7, 67469–67482 (2019)CrossRef D.J. Hu, Z. Xu, P.P. Shum, Review on photonic crystal fibers with hybrid guiding mechanisms. IEEE Access 7, 67469–67482 (2019)CrossRef
Zurück zum Zitat A. Khetani, A. Momenpour, E.I. Alarcon, H. Anis, Hollow core photonic crystal fiber for monitoring leukemia cells using surface enhanced Raman scattering (SERS). Opt. Express 23(22), 4599–4609 (2015)CrossRef A. Khetani, A. Momenpour, E.I. Alarcon, H. Anis, Hollow core photonic crystal fiber for monitoring leukemia cells using surface enhanced Raman scattering (SERS). Opt. Express 23(22), 4599–4609 (2015)CrossRef
Zurück zum Zitat E. Klantsataya, A. Francois, H. Ebendorff-Heidepriem, P. Hoffmann, T.M. Monro, Surface plasmon scattering in exposed core optical fiber for enhanced resolution refractive index sensing. Sensors 15, 25090–25102 (2015)CrossRef E. Klantsataya, A. Francois, H. Ebendorff-Heidepriem, P. Hoffmann, T.M. Monro, Surface plasmon scattering in exposed core optical fiber for enhanced resolution refractive index sensing. Sensors 15, 25090–25102 (2015)CrossRef
Zurück zum Zitat J.C. Knight, Photonic crystal fibres. Nature 847–851 (2003) J.C. Knight, Photonic crystal fibres. Nature 847–851 (2003)
Zurück zum Zitat J.C. Knight, Photonic crystal fibers and fiber lasers. J. Opt. Soc. Am. B 24(8), 1661–1668 (2007)ADSCrossRef J.C. Knight, Photonic crystal fibers and fiber lasers. J. Opt. Soc. Am. B 24(8), 1661–1668 (2007)ADSCrossRef
Zurück zum Zitat J.C. Knight, D.V. Skryabin, Nonlinear waveguide optics and photonic crystal fibers. Opt. Express 15(23), 15365–15376 (2007)ADSCrossRef J.C. Knight, D.V. Skryabin, Nonlinear waveguide optics and photonic crystal fibers. Opt. Express 15(23), 15365–15376 (2007)ADSCrossRef
Zurück zum Zitat H.W. Lee, M.A. Schmidt, P.S. Russell, Excitation of a nanowire “molecule” in gold-filled photonic crystal fiber. Opt. Lett. 37(14), 2946–2948 (2012)ADSCrossRef H.W. Lee, M.A. Schmidt, P.S. Russell, Excitation of a nanowire “molecule” in gold-filled photonic crystal fiber. Opt. Lett. 37(14), 2946–2948 (2012)ADSCrossRef
Zurück zum Zitat B. Li, T. Cheng, J. Chen, X. Yan, Graphene-enhanced surface plasmon resonance liquid refractive index sensor based on photonic crystal fiber. Sensors 19, 3666 (2019)CrossRef B. Li, T. Cheng, J. Chen, X. Yan, Graphene-enhanced surface plasmon resonance liquid refractive index sensor based on photonic crystal fiber. Sensors 19, 3666 (2019)CrossRef
Zurück zum Zitat C. Markos, J.C. Travers, A. Abdolvand, B.J. Eggleton, O. Bang, Hybrid photonic crystal-fiber. Rev. Mod. Phys. 89, 045003 (2017)ADSCrossRef C. Markos, J.C. Travers, A. Abdolvand, B.J. Eggleton, O. Bang, Hybrid photonic crystal-fiber. Rev. Mod. Phys. 89, 045003 (2017)ADSCrossRef
Zurück zum Zitat A.C. Peacock, A. Amezcua-Correa, J. Yang, P.J. Sazio, S.M. Howdle, Highly efficient surface enhanced Raman scattering using microstructured optical fibers with enhanced plasmonic interactions. Appl. Phys. Lett. 92, 114113 (2008)CrossRef A.C. Peacock, A. Amezcua-Correa, J. Yang, P.J. Sazio, S.M. Howdle, Highly efficient surface enhanced Raman scattering using microstructured optical fibers with enhanced plasmonic interactions. Appl. Phys. Lett. 92, 114113 (2008)CrossRef
Zurück zum Zitat Y. Peng, J. Hou, Y. Zhang, Z. Huang, R. Xiao, Q. Lu, Temperature sensing using the bandgap-like effect in a selectively liquid-filled photonic crystal fiber. Opt. Lett. 38(3), 263–265 (2013)ADSCrossRef Y. Peng, J. Hou, Y. Zhang, Z. Huang, R. Xiao, Q. Lu, Temperature sensing using the bandgap-like effect in a selectively liquid-filled photonic crystal fiber. Opt. Lett. 38(3), 263–265 (2013)ADSCrossRef
Zurück zum Zitat A.M. Pinto, M. Lopez-Amo, Photonic crystal fibers for sensing applications. J. Sens. 2012, 598178 (2012)CrossRef A.M. Pinto, M. Lopez-Amo, Photonic crystal fibers for sensing applications. J. Sens. 2012, 598178 (2012)CrossRef
Zurück zum Zitat P. Russell, Photonic crystal fibers. Science 358–362 (2003) P. Russell, Photonic crystal fibers. Science 358–362 (2003)
Zurück zum Zitat C. Sauvan, J.P. Hugonin, I.S. Maksymov, P. Lalanne, Theory of the spontaneous optical emission of nanosize photonic and plasmonic resonators. Phys. Rev. Lett. 110, 237401 (2013)ADSCrossRef C. Sauvan, J.P. Hugonin, I.S. Maksymov, P. Lalanne, Theory of the spontaneous optical emission of nanosize photonic and plasmonic resonators. Phys. Rev. Lett. 110, 237401 (2013)ADSCrossRef
Zurück zum Zitat P.J. Sazio, A. Amezcua-Correa, C.E. Finlayson, J.R. Hayes, T.J. Scheidemantel, N.F. Baril, J.V. Badding, Microstructured optical fibers as high-pressure microfluidic reactors. Science 311, 1583–1586 (2006)ADSCrossRef P.J. Sazio, A. Amezcua-Correa, C.E. Finlayson, J.R. Hayes, T.J. Scheidemantel, N.F. Baril, J.V. Badding, Microstructured optical fibers as high-pressure microfluidic reactors. Science 311, 1583–1586 (2006)ADSCrossRef
Zurück zum Zitat K. Schröder, A. Csáki, A. Schwuchow, F. Jahn, K. Strelau, I. Latka, W. Fritzsche, Functionalization of microstructured optical fibers by internal nanoparticle mono-layers for plasmonic biosensor applications. IEEE Sens. J. 12(1), 218–224 (2012)ADSCrossRef K. Schröder, A. Csáki, A. Schwuchow, F. Jahn, K. Strelau, I. Latka, W. Fritzsche, Functionalization of microstructured optical fibers by internal nanoparticle mono-layers for plasmonic biosensor applications. IEEE Sens. J. 12(1), 218–224 (2012)ADSCrossRef
Zurück zum Zitat J.C. Travers, W. Chang, J. Nold, N.Y. Joly, P.S. Russell, Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers. J. Opt. Soc. Am. B 28(12), A21–A26 (2011)CrossRef J.C. Travers, W. Chang, J. Nold, N.Y. Joly, P.S. Russell, Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers. J. Opt. Soc. Am. B 28(12), A21–A26 (2011)CrossRef
Zurück zum Zitat A. Tuniz, B.T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, S.C. Fleming, Drawn metamaterials with plasmonic response at terahertz frequencies. Appl. Phys. Lett. 96, 191101 (2010)ADSCrossRef A. Tuniz, B.T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, S.C. Fleming, Drawn metamaterials with plasmonic response at terahertz frequencies. Appl. Phys. Lett. 96, 191101 (2010)ADSCrossRef
Zurück zum Zitat J. Villatoro, J. Zubia, New perspectives in photonic crystal fibre sensors. Opt. Laser Technol. 67–75 (2016) J. Villatoro, J. Zubia, New perspectives in photonic crystal fibre sensors. Opt. Laser Technol. 67–75 (2016)
Zurück zum Zitat A. Wang, A. Docherty, B.T. Kuhlmey, F.M. Cox, M.C. Large, Side-hole fiber sensor based on surface plasmon resonance. Opt. Lett. 34(24), 3890–3892 (2009)ADSCrossRef A. Wang, A. Docherty, B.T. Kuhlmey, F.M. Cox, M.C. Large, Side-hole fiber sensor based on surface plasmon resonance. Opt. Lett. 34(24), 3890–3892 (2009)ADSCrossRef
Zurück zum Zitat W.C. Wong, C.C. Chan, J.L. Boo, Z.Y. Teo, Z.Q. Tou, H.B. Yang, K.C. Leong, Photonic crystal fiber surface plasmon resonance biosensor based on protein G immobilization. IEEE J. Sel. Top. Quantum Electron. 19(3), 460217 (2013) W.C. Wong, C.C. Chan, J.L. Boo, Z.Y. Teo, Z.Q. Tou, H.B. Yang, K.C. Leong, Photonic crystal fiber surface plasmon resonance biosensor based on protein G immobilization. IEEE J. Sel. Top. Quantum Electron. 19(3), 460217 (2013)
Zurück zum Zitat T. Wu, Y. Shao, S.C. Ying Wang, W. Cao, F. Zhang, C. Liao, Y. Wang, Surface plasmon resonance biosensor based on gold-coated side-polished hexagonal structure photonic crystal fiber. Opt. Express 25(17), 20313–20322 (2017)ADSCrossRef T. Wu, Y. Shao, S.C. Ying Wang, W. Cao, F. Zhang, C. Liao, Y. Wang, Surface plasmon resonance biosensor based on gold-coated side-polished hexagonal structure photonic crystal fiber. Opt. Express 25(17), 20313–20322 (2017)ADSCrossRef
Zurück zum Zitat Z. Xu, B. Li, D.J. Hu, Z. Wu, S. Ertman, T. Wolinski, P.P. Shum, Hybrid photonic crystal fiber for highly sensitive temperature measurement. J. Opt. 20(7), 075801 (2018)ADSCrossRef Z. Xu, B. Li, D.J. Hu, Z. Wu, S. Ertman, T. Wolinski, P.P. Shum, Hybrid photonic crystal fiber for highly sensitive temperature measurement. J. Opt. 20(7), 075801 (2018)ADSCrossRef
Zurück zum Zitat X. Yang, C. Shi, R. Newhouse, J.Z. Zhang, C. Gu, Hollow-core photonic crystal fibers for surface-enhanced raman scattering probes. Int. J. Opt. 2011, 751610 (2010) X. Yang, C. Shi, R. Newhouse, J.Z. Zhang, C. Gu, Hollow-core photonic crystal fibers for surface-enhanced raman scattering probes. Int. J. Opt. 2011, 751610 (2010)
Zurück zum Zitat X. Yang, C. Shi, R. Newhouse, J.Z. Zhang, C. Gu, Hollow-core photonic crystal fibers for surface-enhanced raman scattering probes. Int. J. Opt. 2011, 754610 (2011)CrossRef X. Yang, C. Shi, R. Newhouse, J.Z. Zhang, C. Gu, Hollow-core photonic crystal fibers for surface-enhanced raman scattering probes. Int. J. Opt. 2011, 754610 (2011)CrossRef
Zurück zum Zitat X.C. Yang, Y. Lu, B.L. Liu, J.Q. Yao, Temperature sensor based on photonic crystal fiber filled with liquid and silver nanowires. IEEE Photonics J. 8(3), 6803309 (2016) X.C. Yang, Y. Lu, B.L. Liu, J.Q. Yao, Temperature sensor based on photonic crystal fiber filled with liquid and silver nanowires. IEEE Photonics J. 8(3), 6803309 (2016)
Zurück zum Zitat S. Zeng, K.V. Sreekanth, J. Shang, T. Yu, C.-K. Chen, F. Yin, K.-T. Yong, Graphene-gold metasurface architectures for ultrasensitive plasmonic biosensing. Adv. Mater. 27(40), 6163–6169 (2015)CrossRef S. Zeng, K.V. Sreekanth, J. Shang, T. Yu, C.-K. Chen, F. Yin, K.-T. Yong, Graphene-gold metasurface architectures for ultrasensitive plasmonic biosensing. Adv. Mater. 27(40), 6163–6169 (2015)CrossRef
Zurück zum Zitat X. Zhang, R. Wang, F.M. Cox, B.T. Kuhlmey, M.C. Large, Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers. Opt. Express 15(24), 16270–16278 (2007)ADSCrossRef X. Zhang, R. Wang, F.M. Cox, B.T. Kuhlmey, M.C. Large, Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers. Opt. Express 15(24), 16270–16278 (2007)ADSCrossRef
Zurück zum Zitat N. Zhang, G. Humbert, T. Gong, P.P. Shum, K. Li, J.-L. Auguste, L. Wei, Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing. Sens. Actuators B Chem. 223, 195–201 (2016)CrossRef N. Zhang, G. Humbert, T. Gong, P.P. Shum, K. Li, J.-L. Auguste, L. Wei, Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing. Sens. Actuators B Chem. 223, 195–201 (2016)CrossRef
Zurück zum Zitat Y. Zhao, Z.-Q. Deng, J. Li, Photonic crystal fiber based surface plasmon resonance chemical sensors. Sens. Actuators B Chem. 202, 557–567 (2014)CrossRef Y. Zhao, Z.-Q. Deng, J. Li, Photonic crystal fiber based surface plasmon resonance chemical sensors. Sens. Actuators B Chem. 202, 557–567 (2014)CrossRef
Metadaten
Titel
Plasmonic Photonic Crystal Fibers
verfasst von
Dora Juan Juan Hu
Aaron Ho-Pui Ho
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-5507-7_1

Neuer Inhalt