Skip to main content

2015 | OriginalPaper | Buchkapitel

Plasmonic Properties of Metallic Nanostructures, Two Dimensional Materials, and Their Composites

verfasst von : Lauren Rast

Erschienen in: Applied Spectroscopy and the Science of Nanomaterials

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The intense and highly tunable optical field enhancement provided by nanomaterials supporting plasmon resonances has diverse applications including biophotonics, terahertz spectroscopy, and subwavelength microscopy. This chapter compares plasmon resonance behavior and tunability in noble metal nanostructures with that of two dimensional and quasi-two dimensional materials including graphene, silicene, germanene, and the transition metal dichalcogenides. Plasmonic optical behavior and related advancements in two-dimensional materials functionalized by metallic nanostructures are discussed. Finally, possibilities for new directions for work on similar composite plasmonic systems are outlined.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Certain commercial equipment, instruments, or materials are identified in this paper in order to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.
 
Literatur
1.
Zurück zum Zitat Ritchie RH (1957) Plasma losses by fast electrons in thin films. Phys Rev 106:874–881CrossRef Ritchie RH (1957) Plasma losses by fast electrons in thin films. Phys Rev 106:874–881CrossRef
2.
Zurück zum Zitat Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface- enhanced Raman scattering. Science 275(5303):1102–1106CrossRef Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface- enhanced Raman scattering. Science 275(5303):1102–1106CrossRef
3.
Zurück zum Zitat Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758):189–193CrossRef Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758):189–193CrossRef
4.
Zurück zum Zitat Liu N, Wei H, Li J, Wang Z, Tian X, Pan A, Xu H (2013) Plasmonic amplification with ultra-high optical gain at room temperature. Sci Rep 3:1967 Liu N, Wei H, Li J, Wang Z, Tian X, Pan A, Xu H (2013) Plasmonic amplification with ultra-high optical gain at room temperature. Sci Rep 3:1967
5.
Zurück zum Zitat Dionne JA, Atwater HA (2012) Plasmonics: Metal-worthy methods and materials in nanophotonics. MRS Bull 37(8):717–724CrossRef Dionne JA, Atwater HA (2012) Plasmonics: Metal-worthy methods and materials in nanophotonics. MRS Bull 37(8):717–724CrossRef
6.
Zurück zum Zitat Stockman M (2007) Criterion for negative refraction with low optical losses from a fundamental principle of causality. Phys Rev Lett 98:177404CrossRef Stockman M (2007) Criterion for negative refraction with low optical losses from a fundamental principle of causality. Phys Rev Lett 98:177404CrossRef
7.
Zurück zum Zitat Kinsler P, McCall MW (2008) Causality-based criteria for a negative refractive index must be used with care. Phys Rev Lett 101(16):167401CrossRef Kinsler P, McCall MW (2008) Causality-based criteria for a negative refractive index must be used with care. Phys Rev Lett 101(16):167401CrossRef
8.
Zurück zum Zitat Dirdal C, Skaar J (2013) Negative refraction in causal media by evaluating polar paths for rational functions. J Opt Soc Am B: Opt Phys 30(2):370–376CrossRef Dirdal C, Skaar J (2013) Negative refraction in causal media by evaluating polar paths for rational functions. J Opt Soc Am B: Opt Phys 30(2):370–376CrossRef
9.
Zurück zum Zitat Boltasseva A, Atwater H (2011) Low-loss plasmonic metamaterials. Science 331(6015):290–291CrossRef Boltasseva A, Atwater H (2011) Low-loss plasmonic metamaterials. Science 331(6015):290–291CrossRef
10.
Zurück zum Zitat Rast L, Stanishevsky A (2005) Aggregated nanoparticle structures prepared by thermal decomposition of poly(vinyl)-N-pyrrolidone/Ag nanoparticle composite films. Appl Phys Lett 87 Rast L, Stanishevsky A (2005) Aggregated nanoparticle structures prepared by thermal decomposition of poly(vinyl)-N-pyrrolidone/Ag nanoparticle composite films. Appl Phys Lett 87
11.
Zurück zum Zitat Kamat P (2002) J Phys Chem B. Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. 106(32):7729–7744 Kamat P (2002) J Phys Chem B. Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. 106(32):7729–7744
12.
Zurück zum Zitat Klar T, Perner M, Grosse S, Von Plessen G, Sprikl W, Feldmann J (1998) Surface-plasmon resonances in single metallic nanoparticles. Phys Rev Lett 80:4249CrossRef Klar T, Perner M, Grosse S, Von Plessen G, Sprikl W, Feldmann J (1998) Surface-plasmon resonances in single metallic nanoparticles. Phys Rev Lett 80:4249CrossRef
13.
Zurück zum Zitat Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677CrossRef Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677CrossRef
14.
Zurück zum Zitat Draine BT, Flatau PJ (1994) Discrete dipole approximation for scattering calculations. J Opt Soc Am A: 11:1491–1499CrossRef Draine BT, Flatau PJ (1994) Discrete dipole approximation for scattering calculations. J Opt Soc Am A: 11:1491–1499CrossRef
15.
Zurück zum Zitat Draine, BT, Flatau, PJ (2012) User Guide to the Discrete Dipole Approximation Code DDSCAT 7.2. arXiv preprint arXiv: 1202.3424 Draine, BT, Flatau, PJ (2012) User Guide to the Discrete Dipole Approximation Code DDSCAT 7.2. arXiv preprint arXiv: 1202.3424
16.
Zurück zum Zitat Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379CrossRef Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379CrossRef
17.
Zurück zum Zitat Doyle WT, Agarwal A (1965) Optical Extinction of Metal Spheres. J Opt Soc Am 55:305–308CrossRef Doyle WT, Agarwal A (1965) Optical Extinction of Metal Spheres. J Opt Soc Am 55:305–308CrossRef
18.
Zurück zum Zitat Sherry LJ, Chang SH, Schatz GC, Van Duyne RP (2006) Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. Nano Lett 6(9):2060–2065CrossRef Sherry LJ, Chang SH, Schatz GC, Van Duyne RP (2006) Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. Nano Lett 6(9):2060–2065CrossRef
19.
Zurück zum Zitat Chen S, Fan Z, Carroll DL (2002) Silver nanodisks: synthesis, characterization, and self-assembly. J Phys Chem B 106(42):10777:10781 Chen S, Fan Z, Carroll DL (2002) Silver nanodisks: synthesis, characterization, and self-assembly. J Phys Chem B 106(42):10777:10781
20.
Zurück zum Zitat Stanishevsky A, Williamson H, Yockell-Leviere H, Rast L, Ritcey AM (2005) Synthesis of complex shape gold nanoparticles in water-methanol mixtures. J Nanosci Nanotechnol 6(7):2013–2017CrossRef Stanishevsky A, Williamson H, Yockell-Leviere H, Rast L, Ritcey AM (2005) Synthesis of complex shape gold nanoparticles in water-methanol mixtures. J Nanosci Nanotechnol 6(7):2013–2017CrossRef
21.
Zurück zum Zitat Barnard AS (2012) Mapping the shape and phase of palladium nanocatalysts. Catal Sci Technol 2:1485–1492CrossRef Barnard AS (2012) Mapping the shape and phase of palladium nanocatalysts. Catal Sci Technol 2:1485–1492CrossRef
22.
Zurück zum Zitat Schaefers S, Rast L, Stanishevsky A (2006) Electroless silver plating on spin-coated silver nanoparticle seed layers. Mater Lett 60(5):706–709 Schaefers S, Rast L, Stanishevsky A (2006) Electroless silver plating on spin-coated silver nanoparticle seed layers. Mater Lett 60(5):706–709
23.
Zurück zum Zitat Bosman M, Ye E, Tan SF, Nijhuis CA, Yang JKW, Marty R, Mlayah A, Arbouet A, Girard C, Han MY (2013) Surface plasmon damping quantified with an electron nanoprobe. Nat Sci Rep 3:1312 Bosman M, Ye E, Tan SF, Nijhuis CA, Yang JKW, Marty R, Mlayah A, Arbouet A, Girard C, Han MY (2013) Surface plasmon damping quantified with an electron nanoprobe. Nat Sci Rep 3:1312
24.
Zurück zum Zitat Ritchie RH, Marusak AL (1966) The surface plasmon dispersion relation for an electron gas. Surf Sci 4(3):234–240CrossRef Ritchie RH, Marusak AL (1966) The surface plasmon dispersion relation for an electron gas. Surf Sci 4(3):234–240CrossRef
25.
Zurück zum Zitat Osma J, Garcia de Abajo FJ (1997) Surface effects in the energy loss of ions passing through a thin foil. Phys Rev A 56:2032–2040CrossRef Osma J, Garcia de Abajo FJ (1997) Surface effects in the energy loss of ions passing through a thin foil. Phys Rev A 56:2032–2040CrossRef
26.
Zurück zum Zitat Yi GC (2012) Semiconductor nanostructures for optoelectronic devices: processing, characterization, and applications. Springer, HeidelbergCrossRef Yi GC (2012) Semiconductor nanostructures for optoelectronic devices: processing, characterization, and applications. Springer, HeidelbergCrossRef
27.
Zurück zum Zitat Lambin Ph, Vigneron JP, Lucas AA (1985) Electron-energy-loss spectroscopy of multilayered materials: theoretical aspects and study of interface optical phonons in semiconductor superlattices. Phys Rev B 32:8203–8215CrossRef Lambin Ph, Vigneron JP, Lucas AA (1985) Electron-energy-loss spectroscopy of multilayered materials: theoretical aspects and study of interface optical phonons in semiconductor superlattices. Phys Rev B 32:8203–8215CrossRef
28.
Zurück zum Zitat Rast L, Tewary VK (2013) Stratified graphene/noble metal systems for low-loss plasmonics applications. Phys Rev B 87(4):045428CrossRef Rast L, Tewary VK (2013) Stratified graphene/noble metal systems for low-loss plasmonics applications. Phys Rev B 87(4):045428CrossRef
29.
Zurück zum Zitat Boragno C, Buatier de Mongeot F, Felici R, Robinson IK (2009) Critical thickness for the agglomeration of thin metal films. Phys Rev B 79:155443CrossRef Boragno C, Buatier de Mongeot F, Felici R, Robinson IK (2009) Critical thickness for the agglomeration of thin metal films. Phys Rev B 79:155443CrossRef
30.
Zurück zum Zitat Rha JJ, Park JK (1997) Stability of the grain configurations of thin films—A model for agglomeration. J Appl Phys 82:1608CrossRef Rha JJ, Park JK (1997) Stability of the grain configurations of thin films—A model for agglomeration. J Appl Phys 82:1608CrossRef
31.
Zurück zum Zitat Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205CrossRef Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205CrossRef
32.
Zurück zum Zitat Dionne JA, Sweatlock LA, Atwater HA, Polman A (2005) Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model. Phys Rev B 72:075405CrossRef Dionne JA, Sweatlock LA, Atwater HA, Polman A (2005) Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model. Phys Rev B 72:075405CrossRef
33.
Zurück zum Zitat Khurgin JB, Boltassevaa A (2012) Reflecting upon the losses in plasmonics and metamaterials. MRS Bull 37(8):768–779 Khurgin JB, Boltassevaa A (2012) Reflecting upon the losses in plasmonics and metamaterials. MRS Bull 37(8):768–779
34.
Zurück zum Zitat Messina1 R, Hugonin JP, Greffet JJ, Marquier F, De Wilde Y, Belarouci A, Luc Frechette L, Cordier Y, Ben-Abdallah P (2013) Tuning the electromagnetic local density of states in graphene-covered systems via strong coupling with graphene plasmons. Phys Rev B 87:085421 Messina1 R, Hugonin JP, Greffet JJ, Marquier F, De Wilde Y, Belarouci A, Luc Frechette L, Cordier Y, Ben-Abdallah P (2013) Tuning the electromagnetic local density of states in graphene-covered systems via strong coupling with graphene plasmons. Phys Rev B 87:085421
35.
Zurück zum Zitat Ghatak S, Nath Pal A, Ghosh A (2011) Nature of electronic states in atomically thin MoS2 field-effect transistors. ACS Nano 5(10):7707–7712CrossRef Ghatak S, Nath Pal A, Ghosh A (2011) Nature of electronic states in atomically thin MoS2 field-effect transistors. ACS Nano 5(10):7707–7712CrossRef
36.
Zurück zum Zitat Ni Z, Liu Q, Tang K, Zheng J, Zhou J, Qin R, Gao Z, Yu D, Lu J (2012) Tunable Bandgap in Silicene and Germanene. Nano Lett 12(1):113–118CrossRef Ni Z, Liu Q, Tang K, Zheng J, Zhou J, Qin R, Gao Z, Yu D, Lu J (2012) Tunable Bandgap in Silicene and Germanene. Nano Lett 12(1):113–118CrossRef
37.
Zurück zum Zitat Berini P (1999) Plasmon polariton modes guided by a metal film of finite width. Opt Lett 24(15):1011–1013CrossRef Berini P (1999) Plasmon polariton modes guided by a metal film of finite width. Opt Lett 24(15):1011–1013CrossRef
38.
Zurück zum Zitat Koppens FHL, Chang DE, Garcia de Abajo FJ (2011) Graphene plasmonics: A platform for strong light-matter interaction. Nano Lett 11(8):3370–3377CrossRef Koppens FHL, Chang DE, Garcia de Abajo FJ (2011) Graphene plasmonics: A platform for strong light-matter interaction. Nano Lett 11(8):3370–3377CrossRef
39.
Zurück zum Zitat Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. PNAS 102(30):10451–10453CrossRef Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. PNAS 102(30):10451–10453CrossRef
40.
Zurück zum Zitat Xue J, Sanchez-Yamagishi J, Bulmash D, Jacquod P, Deshpande A, Watanabe K, Taniguchi T, Jarillo-Herrero P, LeRoy BJ (2011) Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nat Mater 10:282–285CrossRef Xue J, Sanchez-Yamagishi J, Bulmash D, Jacquod P, Deshpande A, Watanabe K, Taniguchi T, Jarillo-Herrero P, LeRoy BJ (2011) Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nat Mater 10:282–285CrossRef
41.
Zurück zum Zitat Li L, Wang X, Zhao X, Zhao M (2013) Moiré superstructures of silicene on hexagonal boron nitride: a first-principles study. Phys Lett A 377(38):2628–2632CrossRef Li L, Wang X, Zhao X, Zhao M (2013) Moiré superstructures of silicene on hexagonal boron nitride: a first-principles study. Phys Lett A 377(38):2628–2632CrossRef
42.
Zurück zum Zitat Kuisma M, Ojanen J, Enkovaara J, Rantala TT (2010) Kohn-Sham potential with discontinuity for band gap materials. Phys Rev B 82:115106CrossRef Kuisma M, Ojanen J, Enkovaara J, Rantala TT (2010) Kohn-Sham potential with discontinuity for band gap materials. Phys Rev B 82:115106CrossRef
43.
Zurück zum Zitat Mortensen JJ, Hansen LB, Jacobsen KW (2005) Real-space grid implementation of the projector augmented wave method. Phys Rev B 71:035109CrossRef Mortensen JJ, Hansen LB, Jacobsen KW (2005) Real-space grid implementation of the projector augmented wave method. Phys Rev B 71:035109CrossRef
44.
Zurück zum Zitat Enkovaara J, Rostgaard C, Mortensen JJ et al (2010) Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. J Phys: Condens Mater 22:253202 Enkovaara J, Rostgaard C, Mortensen JJ et al (2010) Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. J Phys: Condens Mater 22:253202
45.
Zurück zum Zitat Walter M, Hakkinen H, Lehtovaara L, Puska M, Enkovaara J, Rostgaard C, Mortensen JJ (2008) Time-dependent density-functional theory in the projector augmented-wave method. J Chem Phys 128:244101CrossRef Walter M, Hakkinen H, Lehtovaara L, Puska M, Enkovaara J, Rostgaard C, Mortensen JJ (2008) Time-dependent density-functional theory in the projector augmented-wave method. J Chem Phys 128:244101CrossRef
46.
Zurück zum Zitat Yan J, Mortensen JJ, Jacobsen KW, Thygesen KS (2011) Linear density response function in the projector augmented wave method: applications to solids, surfaces, and interfaces. Phys Rev B 83:245122CrossRef Yan J, Mortensen JJ, Jacobsen KW, Thygesen KS (2011) Linear density response function in the projector augmented wave method: applications to solids, surfaces, and interfaces. Phys Rev B 83:245122CrossRef
47.
Zurück zum Zitat Yan J, Jacobsen KW, Thygesen KS (2012) Optical properties of bulk semiconductors and graphene/boron nitride: The Bethe-Salpeter equation with derivative discontinuity-corrected density functional energies. Phys Rev B 86:045208CrossRef Yan J, Jacobsen KW, Thygesen KS (2012) Optical properties of bulk semiconductors and graphene/boron nitride: The Bethe-Salpeter equation with derivative discontinuity-corrected density functional energies. Phys Rev B 86:045208CrossRef
48.
Zurück zum Zitat Wei W, Dai Y, Huang B, Jacob B (2013) Many-body effects in silicene, silicane, germanene and germanane. Phys Chem Chem Phys 15:8789–8794CrossRef Wei W, Dai Y, Huang B, Jacob B (2013) Many-body effects in silicene, silicane, germanene and germanane. Phys Chem Chem Phys 15:8789–8794CrossRef
49.
Zurück zum Zitat Rozzi CA, Varsano D, Marini A, Gross EKU, Rubio A (2006) An exact Coulomb cutoff technique for supercell calculations. Phys Rev B 73:205119CrossRef Rozzi CA, Varsano D, Marini A, Gross EKU, Rubio A (2006) An exact Coulomb cutoff technique for supercell calculations. Phys Rev B 73:205119CrossRef
50.
Zurück zum Zitat Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotech 7:699–712CrossRef Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotech 7:699–712CrossRef
51.
Zurück zum Zitat Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388CrossRef Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388CrossRef
52.
Zurück zum Zitat Dereux A, Vigneron JP, Lambin Ph, Lucas AA (1988) Polaritons in semiconductor multilayered materials. Phys Rev B 38:5438–5452CrossRef Dereux A, Vigneron JP, Lambin Ph, Lucas AA (1988) Polaritons in semiconductor multilayered materials. Phys Rev B 38:5438–5452CrossRef
53.
Zurück zum Zitat Economou EN (1969) Surface plasmons in thin films. Phys Rev 182(2):539–554CrossRef Economou EN (1969) Surface plasmons in thin films. Phys Rev 182(2):539–554CrossRef
54.
Zurück zum Zitat Murarka SP, Eizenberg M, Sinha AK (2003) Interlayer Dielectrics for Semiconductor Technologies. Elsevier, Amsterdam Murarka SP, Eizenberg M, Sinha AK (2003) Interlayer Dielectrics for Semiconductor Technologies. Elsevier, Amsterdam
55.
Zurück zum Zitat Yi GC (2012) Semiconductor Nanostructures for Optoelectronic Devices: Processing, Characterization, and Applications. Springer, Heidelberg, Dordrecht, London, New YorkCrossRef Yi GC (2012) Semiconductor Nanostructures for Optoelectronic Devices: Processing, Characterization, and Applications. Springer, Heidelberg, Dordrecht, London, New YorkCrossRef
56.
Zurück zum Zitat Nikitin AY, Guinea F, Martin-Moreno L (2012) Resonant plasmonic effects in periodic graphene antidot arrays. Appl Phys Lett 101(15):151119CrossRef Nikitin AY, Guinea F, Martin-Moreno L (2012) Resonant plasmonic effects in periodic graphene antidot arrays. Appl Phys Lett 101(15):151119CrossRef
57.
Zurück zum Zitat Schultz MH, Jauho AP, Pedersen TG (2011) Screening in graphene antidot lattices. Phys Rev B 84:045428 Schultz MH, Jauho AP, Pedersen TG (2011) Screening in graphene antidot lattices. Phys Rev B 84:045428
58.
Zurück zum Zitat Zhang YT, Li QM, Li YC, Zhang YY, Zhai F (2010) Band structures and transport properties of zigzag graphene nanoribbons with antidot arrays. J Phys: Condens Matter 22:315304 Zhang YT, Li QM, Li YC, Zhang YY, Zhai F (2010) Band structures and transport properties of zigzag graphene nanoribbons with antidot arrays. J Phys: Condens Matter 22:315304
59.
Zurück zum Zitat Pedersen JG, Pederson TG (2013) Hofstadter butterflies and magnetically induced band-gap quenching in graphene antidot lattices. Phys Rev B 87:235404CrossRef Pedersen JG, Pederson TG (2013) Hofstadter butterflies and magnetically induced band-gap quenching in graphene antidot lattices. Phys Rev B 87:235404CrossRef
60.
Zurück zum Zitat Gotschy W, Vonmetz K, Leitner A, Aussenegg FR (1996) Thin films by regular patterns of metal nanoparticles: Tailoring the optical properties by nanodesign. Appl Phys B 63(4):381–384CrossRef Gotschy W, Vonmetz K, Leitner A, Aussenegg FR (1996) Thin films by regular patterns of metal nanoparticles: Tailoring the optical properties by nanodesign. Appl Phys B 63(4):381–384CrossRef
61.
Zurück zum Zitat Hulteen JC, Treichel DA, Smith MT, Duval ML, Jensen TR, Van Duyne RP (1999) Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays. J Phys Chem B 103:3854–3863CrossRef Hulteen JC, Treichel DA, Smith MT, Duval ML, Jensen TR, Van Duyne RP (1999) Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays. J Phys Chem B 103:3854–3863CrossRef
62.
Zurück zum Zitat Hamley IW (2003) Nanostructure fabrication using block copolymers. Nanotech 14(10):R39CrossRef Hamley IW (2003) Nanostructure fabrication using block copolymers. Nanotech 14(10):R39CrossRef
63.
Zurück zum Zitat Chu H, Wang J, Ding L, Yuan D, Zhang Y, Liu J, Li Y (2009) Decoration of gold nanoparticles on surface-grown single-walled carbon nanotubes for detection of every nanotube by surface-enhanced raman spectroscopy. J Am Chem Soc 131(40):14310–14316CrossRef Chu H, Wang J, Ding L, Yuan D, Zhang Y, Liu J, Li Y (2009) Decoration of gold nanoparticles on surface-grown single-walled carbon nanotubes for detection of every nanotube by surface-enhanced raman spectroscopy. J Am Chem Soc 131(40):14310–14316CrossRef
64.
Zurück zum Zitat Zedan AF, Moussa S, Terner J, Atkinson G, El-Shall MS (2012) Ultrasmall gold nanoparticles anchored to graphene and enhanced photothermal effects by laser irradiation of gold nanostructures in graphene oxide solutions. ACS Nano 7(1):627–636CrossRef Zedan AF, Moussa S, Terner J, Atkinson G, El-Shall MS (2012) Ultrasmall gold nanoparticles anchored to graphene and enhanced photothermal effects by laser irradiation of gold nanostructures in graphene oxide solutions. ACS Nano 7(1):627–636CrossRef
65.
Zurück zum Zitat Shi Y, Huang JK, Jin L, Hsu YT, Yu SF, Li LJ, Yang HY (2013) Selective decoration of au nanoparticles on monolayer mos2 single crystals. Sci Rep 3:1839 Shi Y, Huang JK, Jin L, Hsu YT, Yu SF, Li LJ, Yang HY (2013) Selective decoration of au nanoparticles on monolayer mos2 single crystals. Sci Rep 3:1839
66.
Zurück zum Zitat Zaniewski AM, Schriver M, Lee JG, Crommie MF, Zettl A (2013) Electronic and optical properties of metal-nanoparticle filled graphene sandwiches. Appl Phys Lett 102:023108CrossRef Zaniewski AM, Schriver M, Lee JG, Crommie MF, Zettl A (2013) Electronic and optical properties of metal-nanoparticle filled graphene sandwiches. Appl Phys Lett 102:023108CrossRef
67.
Zurück zum Zitat Lin J, Li H, Zhang H, Chen W (2013) Plasmonic enhancement of photocurrent in MoS2 field-effect-transistor. Appl Phys Lett 102(20):203109CrossRef Lin J, Li H, Zhang H, Chen W (2013) Plasmonic enhancement of photocurrent in MoS2 field-effect-transistor. Appl Phys Lett 102(20):203109CrossRef
69.
Zurück zum Zitat Eberlein T, Bangert U, Nair RR, Jones R, Gass M, Bleloch AL, Novoselov KS (2008) Plasmon spectroscopy of free-standing graphene films. Phys Rev B 77(23):223406CrossRef Eberlein T, Bangert U, Nair RR, Jones R, Gass M, Bleloch AL, Novoselov KS (2008) Plasmon spectroscopy of free-standing graphene films. Phys Rev B 77(23):223406CrossRef
70.
Zurück zum Zitat Yang L, Deslippe J, Park CH, Cohen ML, Louie SG (2009) Excitonic effects on the optical response of graphene and bilayer graphene. Phys Rev Lett 103(18):186802CrossRef Yang L, Deslippe J, Park CH, Cohen ML, Louie SG (2009) Excitonic effects on the optical response of graphene and bilayer graphene. Phys Rev Lett 103(18):186802CrossRef
71.
Zurück zum Zitat Cudazzo P, Attaccalite C, Tokatly IV, Rubio A (2010) Strong charge-transfer excitonic effects and the Bose-Einstein exciton condensate in graphene. Phys Rev Lett 104(22):226804CrossRef Cudazzo P, Attaccalite C, Tokatly IV, Rubio A (2010) Strong charge-transfer excitonic effects and the Bose-Einstein exciton condensate in graphene. Phys Rev Lett 104(22):226804CrossRef
72.
Zurück zum Zitat Bechstedt F, Matthes L, Gori P, Pulci O (2012) Infrared absorbance of silicene and germanene. Appl Phys Lett 100(26):261906CrossRef Bechstedt F, Matthes L, Gori P, Pulci O (2012) Infrared absorbance of silicene and germanene. Appl Phys Lett 100(26):261906CrossRef
73.
Zurück zum Zitat Chinnathambi K, Chakrabarti A, Banerjee A, Deb SK (2012) Optical properties of graphene-like two dimensional silicene. arXiv preprint arXiv:1205.5099 Chinnathambi K, Chakrabarti A, Banerjee A, Deb SK (2012) Optical properties of graphene-like two dimensional silicene. arXiv preprint arXiv:1205.5099
74.
Zurück zum Zitat Coleman J, Lotya M, O’Neill A et al (2011) Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331:568–571CrossRef Coleman J, Lotya M, O’Neill A et al (2011) Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331:568–571CrossRef
75.
Zurück zum Zitat Johari P, Shenoy VB (2011) Tunable dielectric properties of transition metal dichalcogenides. ACS Nano 5(7):5903–5908CrossRef Johari P, Shenoy VB (2011) Tunable dielectric properties of transition metal dichalcogenides. ACS Nano 5(7):5903–5908CrossRef
76.
Zurück zum Zitat Ma Y, Dai Y, Guo M, Yu L, Huang B (2013) Tunable electronic and dielectric behavior of GaS and GaSe monolayers. Phys Chem Chem Phys 15:7098–7105CrossRef Ma Y, Dai Y, Guo M, Yu L, Huang B (2013) Tunable electronic and dielectric behavior of GaS and GaSe monolayers. Phys Chem Chem Phys 15:7098–7105CrossRef
77.
Zurück zum Zitat Lin X, Lin S, Xu Y et al (2013) Ab initio study of electronic and optical behavior of two-dimensional silicon carbide. J Mater Chem C 1:2131–2135CrossRef Lin X, Lin S, Xu Y et al (2013) Ab initio study of electronic and optical behavior of two-dimensional silicon carbide. J Mater Chem C 1:2131–2135CrossRef
Metadaten
Titel
Plasmonic Properties of Metallic Nanostructures, Two Dimensional Materials, and Their Composites
verfasst von
Lauren Rast
Copyright-Jahr
2015
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-287-242-5_8

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.