Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 9/2020

22.06.2020

Plastic Flow During Hot Working of Ti-7Al

verfasst von: S. L. Semiatin, N. C. Levkulich, A. A. Salem, A. L. Pilchak

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 9/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Plastic flow during hot working of Ti-7Al with an equiaxed-α (fully-recrystallized) starting microstructure was quantified and interpreted via hot compression testing, metallographic/texture characterization, and internal-state-variable modeling. Isothermal, hot compression tests were conducted to axial strains of 0.2, 0.5, or 1.0 at temperatures of 1089 K, 1172 K, and 1227 K (816 °C, 899 °C, and 954 °C) and a constant true rate of 0.1 s−1. After correcting for deformation heating effects, all of the corresponding flow curves exhibited a high level of flow hardening at strains between 0 and ~ 0.2 followed by moderate hardening. Subsequent microstructure analysis via polarized-light, optical microscopy and electron-backscatter diffraction in a scanning-electron microscope revealed wrought grains containing substantial orientation gradients, small fractions (≤ 0.1) of very fine recrystallized grains at the initial grain boundaries, and small fractions of deformation twins. In view of the absence of discontinuous dynamic recrystallization except at large strains/high temperatures, viscoplastic, self-consistent (VPSC) crystal-plasticity analysis was performed to quantify the effect of crystallographic texture changes on plastic flow. For this purpose, simulations were done assuming (1) deformation via slip alone or slip plus twinning and (2) an absence of strain hardening. The VPSC simulations revealed similar texture hardening for both types of assumed deformation modes. Correction of the flow curves for such texture hardening resulted in material flow response comprising an initial strain-hardening transient followed by steady-state flow. The latter curves were analyzed in terms of the Yoshie–Laasraoui–Jonas single-state-variable formulation. The fitted dynamic-recovery and strain-hardening parameters were comparable to those found for fcc metals at hot working temperatures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Per the typical YLJ formulation,[12] the effect of texture on the flow stress is implicitly included in the constant “a”. In cubic metals (for which most attention has been focused in the literature), texture changes during plastic flow are often small and neglected. Because of the much larger texture changes for hcp metals, the effect of texture change on actual material flow was eliminated by the procedure described earlier in this section.
 
Literatur
1.
Zurück zum Zitat Aerospace Structural Metals Database, CINDAS LLC, Purdue Technology Center, West Lafayette, IN, 2007. Aerospace Structural Metals Database, CINDAS LLC, Purdue Technology Center, West Lafayette, IN, 2007.
2.
Zurück zum Zitat J.E. Allison, M. Li, and X.M. Su: in Fundamentals of Modeling for Metals Processing, ASM Handbook, vol. 22A, D.U. Furrer and S.L. Semiatin, eds., ASM International, Materials Park, OH, 2009, pp. 7–14. J.E. Allison, M. Li, and X.M. Su: in Fundamentals of Modeling for Metals Processing, ASM Handbook, vol. 22A, D.U. Furrer and S.L. Semiatin, eds., ASM International, Materials Park, OH, 2009, pp. 7–14.
3.
Zurück zum Zitat G.I. Taylor: J. Inst. Metals, 1938, vol. 62, pp. 307-324. G.I. Taylor: J. Inst. Metals, 1938, vol. 62, pp. 307-324.
4.
5.
6.
Zurück zum Zitat R.A. Lebensohn and C.N. Tome: Acta Metall. et Mater., 1993, vol. 41, pp. 2611-2624.CrossRef R.A. Lebensohn and C.N. Tome: Acta Metall. et Mater., 1993, vol. 41, pp. 2611-2624.CrossRef
7.
Zurück zum Zitat D. Dye, H.J. Stone, and R.C. Reed: Acta Mater., 2001, vol. 49, pp. 1271-1283CrossRef D. Dye, H.J. Stone, and R.C. Reed: Acta Mater., 2001, vol. 49, pp. 1271-1283CrossRef
8.
Zurück zum Zitat P.R. Dawson and D.E. Boyce: in Fundamentals of Modeling for Metals Processing, ASM Handbook, vol. 22A, D.U. Furrer and S.L. Semiatin, eds., ASM International, Materials Park, OH, 2009, pp. 246–59. P.R. Dawson and D.E. Boyce: in Fundamentals of Modeling for Metals Processing, ASM Handbook, vol. 22A, D.U. Furrer and S.L. Semiatin, eds., ASM International, Materials Park, OH, 2009, pp. 246–59.
9.
Zurück zum Zitat S.L. Semiatin and T. Altan: in Metals Process Simulation, ASM Handbook, vol. 22B, D.U. Furrer and S.L. Semiatin, eds., ASM International, Materials Park, OH, 2010, pp. 46–66. S.L. Semiatin and T. Altan: in Metals Process Simulation, ASM Handbook, vol. 22B, D.U. Furrer and S.L. Semiatin, eds., ASM International, Materials Park, OH, 2010, pp. 46–66.
10.
Zurück zum Zitat H. Mecking and A. Beaudoin: in Fundamentals of Modeling for Metals Processing, ASM Handbook, vol. 22A, D.U. Furrer and S.L. Semiatin, eds., ASM International, Materials Park, OH, 2009, pp. 458–71. H. Mecking and A. Beaudoin: in Fundamentals of Modeling for Metals Processing, ASM Handbook, vol. 22A, D.U. Furrer and S.L. Semiatin, eds., ASM International, Materials Park, OH, 2009, pp. 458–71.
11.
12.
Zurück zum Zitat A. Laasraoui and J.J. Jonas: Metall. Trans., 1991, vol. 22A, pp. 1545-1560.CrossRef A. Laasraoui and J.J. Jonas: Metall. Trans., 1991, vol. 22A, pp. 1545-1560.CrossRef
13.
Zurück zum Zitat F. Montheillet, D. Piot, N. Matougui, and M.L. Fares: Metall. Mater. Trans. A, 2014, vol. 45, pp. 4324-4332.CrossRef F. Montheillet, D. Piot, N. Matougui, and M.L. Fares: Metall. Mater. Trans. A, 2014, vol. 45, pp. 4324-4332.CrossRef
14.
Zurück zum Zitat M. Semblanet, L. Pallot, D. Piot, F. Montheillet, M. Derrien, Y. Millet, C. Poletti, and C. Desrayaud: Proc. 13th World Conference on Titanium, V. Venkatesh, et al. eds., TMS, Warrandale, PA, 2016, pp. 689–94. M. Semblanet, L. Pallot, D. Piot, F. Montheillet, M. Derrien, Y. Millet, C. Poletti, and C. Desrayaud: Proc. 13th World Conference on Titanium, V. Venkatesh, et al. eds., TMS, Warrandale, PA, 2016, pp. 689–94.
15.
Zurück zum Zitat R.C. Picu and A. Majorell: Mater. Sci. Eng. A, 2002, vol. A326, pp. 306-316.CrossRef R.C. Picu and A. Majorell: Mater. Sci. Eng. A, 2002, vol. A326, pp. 306-316.CrossRef
16.
Zurück zum Zitat B. Babu and L-E. Lindgren: Inter. J. Plasticity, 2013, vol. 50, pp. 94-108.CrossRef B. Babu and L-E. Lindgren: Inter. J. Plasticity, 2013, vol. 50, pp. 94-108.CrossRef
17.
Zurück zum Zitat P. Gao, H. Yang, X. Fan, and S. Zhu: J. Alloys Comp., 2014, vol. 600, pp. 74-83. P. Gao, H. Yang, X. Fan, and S. Zhu: J. Alloys Comp., 2014, vol. 600, pp. 74-83.
18.
Zurück zum Zitat C. Poletti, L. Germain, F. Warchomicka, M. Dikovits, and S. Mitsche: Mater. Sci. Eng. A, 2016, vol. A651, pp. 280-290.CrossRef C. Poletti, L. Germain, F. Warchomicka, M. Dikovits, and S. Mitsche: Mater. Sci. Eng. A, 2016, vol. A651, pp. 280-290.CrossRef
19.
Zurück zum Zitat K. Hogrefe, R. Buzolin, and M.C. Poletti: Proc. 14th World Conference on Titanium, 2019, in press. K. Hogrefe, R. Buzolin, and M.C. Poletti: Proc. 14th World Conference on Titanium, 2019, in press.
20.
Zurück zum Zitat R. Buzolin, M. Lasnik, A. Krumphals, F. Krumphals, and M.C. Poletti: Proc. 14th World Conference on Titanium, 2019, in press. R. Buzolin, M. Lasnik, A. Krumphals, F. Krumphals, and M.C. Poletti: Proc. 14th World Conference on Titanium, 2019, in press.
21.
Zurück zum Zitat I. Weiss and F.H. Froes: in Titanium ‘84: Science and Technology, G. Luetjering, U. Zwicker, and W. Bunk, eds., Deutsche Gesellschaft fur Metallkunde E.V., Oberursel, Germany, 1985, pp. 499–506. I. Weiss and F.H. Froes: in Titanium ‘84: Science and Technology, G. Luetjering, U. Zwicker, and W. Bunk, eds., Deutsche Gesellschaft fur Metallkunde E.V., Oberursel, Germany, 1985, pp. 499–506.
22.
Zurück zum Zitat F. Chaussy and J.H. Driver: in Beta Titanium Alloys, A. Vassel, D. Eylon, and Y. Combres, eds., Editions de la Revue de Metallurgie, Paris, 1994, pp. 57–64. F. Chaussy and J.H. Driver: in Beta Titanium Alloys, A. Vassel, D. Eylon, and Y. Combres, eds., Editions de la Revue de Metallurgie, Paris, 1994, pp. 57–64.
23.
Zurück zum Zitat W-D. Zeng, Y-G. Zhou, and H-Q. Yu: in Titanium ’95: Science and Technology, P.A. Blenkisop, W.J. Evans, and H.M. Flower, eds., The Institute of Materials, London, 1996, pp. 683–90. W-D. Zeng, Y-G. Zhou, and H-Q. Yu: in Titanium ’95: Science and Technology, P.A. Blenkisop, W.J. Evans, and H.M. Flower, eds., The Institute of Materials, London, 1996, pp. 683–90.
24.
Zurück zum Zitat R. Ding, Z.X. Guo, and A. Wilson: Mater. Sci. Eng. A, 2002, vol. A327, pp. 233-245.CrossRef R. Ding, Z.X. Guo, and A. Wilson: Mater. Sci. Eng. A, 2002, vol. A327, pp. 233-245.CrossRef
25.
Zurück zum Zitat P. Vo, M. Jahazi, and S. Yue: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2965-2980.CrossRef P. Vo, M. Jahazi, and S. Yue: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2965-2980.CrossRef
26.
Zurück zum Zitat H. Oikawa and T. Oomori: Mater. Sci. Eng. A, 1988, vol. A104, pp. 125-130.CrossRef H. Oikawa and T. Oomori: Mater. Sci. Eng. A, 1988, vol. A104, pp. 125-130.CrossRef
27.
Zurück zum Zitat K. Ray, W.J. Poole, A. Mitchell, E.B. Hawbolt: in Advances in the Science and Technology of Titanium Alloy Processing, I. Weiss, R. Srinivasan, P. Bania, D. Eylon, S.L. Semiatin, eds., TMS Warrendale, PA, 1997, pp. 201–08. K. Ray, W.J. Poole, A. Mitchell, E.B. Hawbolt: in Advances in the Science and Technology of Titanium Alloy Processing, I. Weiss, R. Srinivasan, P. Bania, D. Eylon, S.L. Semiatin, eds., TMS Warrendale, PA, 1997, pp. 201–08.
28.
Zurück zum Zitat Y.V.R.K. Prasad, S. Sasidhara, Hot Working Guide—A Compendium of Processing Maps, ASM, Materials Park, OH, 1997, pp. 459–61. Y.V.R.K. Prasad, S. Sasidhara, Hot Working Guide—A Compendium of Processing Maps, ASM, Materials Park, OH, 1997, pp. 459–61.
29.
Zurück zum Zitat R.A.N.M. Barbos, H.C. Braga, and J. Breme: in Titanium ’92: Science and Technology, F.H. Froes and I.L. Caplan, eds., TMS, Warrendale, PA, 1993, pp. 1701–08. R.A.N.M. Barbos, H.C. Braga, and J. Breme: in Titanium ’92: Science and Technology, F.H. Froes and I.L. Caplan, eds., TMS, Warrendale, PA, 1993, pp. 1701–08.
30.
Zurück zum Zitat V.G. Krishna, Y.V.R.K. Prasad, N.C. Birla, and G.S. Rao: J. Mater. Proc. Technol., 1997, vol. 71, pp. 377–383.CrossRef V.G. Krishna, Y.V.R.K. Prasad, N.C. Birla, and G.S. Rao: J. Mater. Proc. Technol., 1997, vol. 71, pp. 377–383.CrossRef
31.
Zurück zum Zitat J. Zhao, K. Wang, L. Lv, and G. Liu: JOM, 2019, vol. 71 (7), pp. 2303-2312.CrossRef J. Zhao, K. Wang, L. Lv, and G. Liu: JOM, 2019, vol. 71 (7), pp. 2303-2312.CrossRef
32.
Zurück zum Zitat S.I. Oh, S.L. Semiatin, and J.J. Jonas: Metall. Trans. A, 1992, vol. 23A, pp. 963-975.CrossRef S.I. Oh, S.L. Semiatin, and J.J. Jonas: Metall. Trans. A, 1992, vol. 23A, pp. 963-975.CrossRef
33.
Zurück zum Zitat R.L. Goetz and S.L. Semiatin: J. Mater. Eng. Perf., 2001, vol. 10, pp. 710–17.CrossRef R.L. Goetz and S.L. Semiatin: J. Mater. Eng. Perf., 2001, vol. 10, pp. 710–17.CrossRef
34.
Zurück zum Zitat H. Oikawa: in Metallurgy and Technology of Practical Titanium Alloys, S. Fujishiro, D. Eylon, and T. Kishi, eds., TMS, Warrendale, OH, 1994, pp. 93–100. H. Oikawa: in Metallurgy and Technology of Practical Titanium Alloys, S. Fujishiro, D. Eylon, and T. Kishi, eds., TMS, Warrendale, OH, 1994, pp. 93–100.
35.
Zurück zum Zitat F. Montheillet and J.J. Jonas: in in Fundamentals of Modeling for Metals Processing, ASM Handbook, vol. 22A, D.U. Furrer and S.L. Semiatin, eds., ASM International, Materials Park, OH, 2009, pp. 220–31. F. Montheillet and J.J. Jonas: in in Fundamentals of Modeling for Metals Processing, ASM Handbook, vol. 22A, D.U. Furrer and S.L. Semiatin, eds., ASM International, Materials Park, OH, 2009, pp. 220–31.
36.
Zurück zum Zitat S.L. Semiatin, D.S. Weaver, P.N. Fagin, M.G. Glavicic, R.L. Goetz, N.D. Frey, R.C. Kramb, and M.M. Antony: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 679-693.CrossRef S.L. Semiatin, D.S. Weaver, P.N. Fagin, M.G. Glavicic, R.L. Goetz, N.D. Frey, R.C. Kramb, and M.M. Antony: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 679-693.CrossRef
37.
Zurück zum Zitat B. Guo, S.L. Semiatin, J. Liang, B. Sun, and J.J. Jonas: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 1450-1454.CrossRef B. Guo, S.L. Semiatin, J. Liang, B. Sun, and J.J. Jonas: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 1450-1454.CrossRef
38.
Zurück zum Zitat F. Larson and A. Zarkades: Properties ofTtextured Titanium Alloys, Report MCIC-74-20, Metals and Ceramics Information Center, Battelle Columbus Laboratories, Columbus, OH, 1974. F. Larson and A. Zarkades: Properties ofTtextured Titanium Alloys, Report MCIC-74-20, Metals and Ceramics Information Center, Battelle Columbus Laboratories, Columbus, OH, 1974.
39.
Zurück zum Zitat D.L. Olmsted, E.A. Holm, and S.M. Foiles: Acta Mater., 2009, vol. 57, pp. 3704-3713.CrossRef D.L. Olmsted, E.A. Holm, and S.M. Foiles: Acta Mater., 2009, vol. 57, pp. 3704-3713.CrossRef
40.
Zurück zum Zitat T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas: Prog. Mater. Sci., 2014, vol. 60, pp. 130-207.CrossRef T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas: Prog. Mater. Sci., 2014, vol. 60, pp. 130-207.CrossRef
41.
Zurück zum Zitat J.C. Williams, R.G. Baggerly, and N.E. Paton: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 837-850.CrossRef J.C. Williams, R.G. Baggerly, and N.E. Paton: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 837-850.CrossRef
42.
Zurück zum Zitat V.M. Miller, S.L. Semiatin, C. Szczepanski, and A.L. Pilchak: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 3624-3636.CrossRef V.M. Miller, S.L. Semiatin, C. Szczepanski, and A.L. Pilchak: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 3624-3636.CrossRef
43.
Zurück zum Zitat C.N. Tomé and R.A. Lebensohn: User’s Manual for VPSC Code, Version 7, Los Alamos National Laboratory, Los Alamos, NM, 2009. C.N. Tomé and R.A. Lebensohn: User’s Manual for VPSC Code, Version 7, Los Alamos National Laboratory, Los Alamos, NM, 2009.
44.
Zurück zum Zitat D. Dunst and H. Mecking: Zeitschrift für Metallkunde, 1996, vol. 87, pp. 498-507. D. Dunst and H. Mecking: Zeitschrift für Metallkunde, 1996, vol. 87, pp. 498-507.
45.
Zurück zum Zitat D.G. LeoPrakash, R. Ding, R.J. Moat, I. Jones, P.J. Withers, J. QuintadaFonseca, and M. Preuss: Mater. Sci. Eng. A, 2010, vol. 527, pp. 5734-5744.CrossRef D.G. LeoPrakash, R. Ding, R.J. Moat, I. Jones, P.J. Withers, J. QuintadaFonseca, and M. Preuss: Mater. Sci. Eng. A, 2010, vol. 527, pp. 5734-5744.CrossRef
46.
Zurück zum Zitat U.F. Kocks, C.N. Tome, and H.-R. Wenk: Texture and Anisotropy, Cambridge University Press, Cambridge, UK, 1998. U.F. Kocks, C.N. Tome, and H.-R. Wenk: Texture and Anisotropy, Cambridge University Press, Cambridge, UK, 1998.
47.
Zurück zum Zitat A. Yoshie, H. Morikawa, and Y. Onoe: Trans. ISIJ, 1987, vol. 27, pp. 425-431.CrossRef A. Yoshie, H. Morikawa, and Y. Onoe: Trans. ISIJ, 1987, vol. 27, pp. 425-431.CrossRef
48.
Zurück zum Zitat G.A. Sargent: Unpublished Research, Air Force Research Laboratory, Wright-Patterson Air Force Base, OH, 2007. G.A. Sargent: Unpublished Research, Air Force Research Laboratory, Wright-Patterson Air Force Base, OH, 2007.
49.
Zurück zum Zitat I. Lonardelli, N. Gey, H.-R. Wenk, M. Humbert, S.C. Vogel, and L. Lutterotti: Acta Mater., 2007, vol. 55, pp. 5718-5727.CrossRef I. Lonardelli, N. Gey, H.-R. Wenk, M. Humbert, S.C. Vogel, and L. Lutterotti: Acta Mater., 2007, vol. 55, pp. 5718-5727.CrossRef
50.
Zurück zum Zitat D. Piot, F. Montheillet, and S.L. Semiatin: Mater. Sci. Forum, 2010, vols. 638-642, pp. 2700-2705.CrossRef D. Piot, F. Montheillet, and S.L. Semiatin: Mater. Sci. Forum, 2010, vols. 638-642, pp. 2700-2705.CrossRef
51.
Zurück zum Zitat Z. Guo, A.P. Miodownik, N. Saunders, and J.-P. Schillé: Scripta Mater., 2006, vol. 54, pp. 2175-2178.CrossRef Z. Guo, A.P. Miodownik, N. Saunders, and J.-P. Schillé: Scripta Mater., 2006, vol. 54, pp. 2175-2178.CrossRef
52.
Zurück zum Zitat J. Lu, L. Hultman, E. Holmstrom, K.H. Antonssson, M. Grehk, W. Lei, L. Vitos, and A. Golpayegani: Acta Mater., 2016, vol. 111, pp. 39-46.CrossRef J. Lu, L. Hultman, E. Holmstrom, K.H. Antonssson, M. Grehk, W. Lei, L. Vitos, and A. Golpayegani: Acta Mater., 2016, vol. 111, pp. 39-46.CrossRef
53.
Zurück zum Zitat M. Muzyk, Z. Pakiela, and K.J. Kurzydlowski: Metals, 2018, vol. 7, pp. 823-831.CrossRef M. Muzyk, Z. Pakiela, and K.J. Kurzydlowski: Metals, 2018, vol. 7, pp. 823-831.CrossRef
Metadaten
Titel
Plastic Flow During Hot Working of Ti-7Al
verfasst von
S. L. Semiatin
N. C. Levkulich
A. A. Salem
A. L. Pilchak
Publikationsdatum
22.06.2020
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 9/2020
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-020-05884-0

Weitere Artikel der Ausgabe 9/2020

Metallurgical and Materials Transactions A 9/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.