Skip to main content

2013 | OriginalPaper | Buchkapitel

11. Plasticity

verfasst von : Andreas Öchsner, Markus Merkel

Erschienen in: One-Dimensional Finite Elements

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The continuum mechanics basics for the one-dimensional bar will be compiled at the beginning of this chapter. The yield condition, the flow rule, the hardening law and the elasto-plastic modulus will be introduced for uniaxial, monotonic loading conditions. Within the scope of the hardening law, the description is limited to isotropic hardening, which occurs for example for the uniaxial tensile test with monotonic loading. For the integration of the elasto-plastic constitutive equation, the incremental predictor-corrector method is generally introduced and derived for the fully implicit and semi-implicit backward-Euler algorithm. On crucial points the difference between one- and three-dimensional descriptions will be pointed out, to guarantee a simple transfer of the derived methods to general problems. Calculated examples and supplementary problems with short solutions serve as an introduction for the theoretical description.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The case of unloading or alternatively load reversal will not be regarded at this point due to simplification reasons.
 
2
If the unit of the yield criterion equals the stress, \(f(\sigma )\) represents the equivalent stress or effective stress. In the general three-dimensional case the following is valid under consideration of the symmetry of the stress tensor \(\sigma _\text{eff}:(\text{I}\!\text{R}^6 \rightarrow \text{I}\!\text{R}_+)\).
 
3
In the general three-dimensional case r hereby defines the direction of the vector \(\text{d}\varvec{\varepsilon }^\text{pl}\), while the scalar factor defines the absolute value.
 
4
A formal alternative derivation of the associated flow rule can occur via the Lagrange multiplier method as extreme value with side-conditions from the principle of maximum plastic work [3].
 
5
In the general three-dimensional case the image vector of the plastic strain increment has to be positioned upright and outside oriented to the yield surface, see Fig. 11.2b.
 
6
Also signum function; from the Latin ‘signum’ for ‘sign’.
 
7
The effective plastic strain is in the general three-dimensional case the function \(\varepsilon _\text{eff}^\text{pl}:(\text{I}\!\text{R}^6 \rightarrow \text{I}\!\text{R}_+)\). In the here regarded one-dimensional case the following is valid: \(\varepsilon _\text{eff}^\text{pl}=\sqrt{\varepsilon ^\text{pl}\varepsilon ^\text{pl}}=|\varepsilon ^\text{pl}|\). Attention: Finite element programs optionally use the more general definition for the illustration in the post processor, this means \(\varepsilon _\text{eff}^\text{pl}=\sqrt{\frac{2}{3}\sum \Delta \varepsilon _{ij}^\text{pl}\sum \Delta \varepsilon _{ij}^\text{pl}}\), which considers the lateral contraction at uniaxial stress problems in the plastic area via the factor \(\frac{2}{3}\). However in pure one-dimensional problems without lateral contraction, this formula leads to an illustration of the effective plastic strain, which is reduced by the factor \(\sqrt{\frac{2}{3}}\approx 0.816\).
 
8
This is the volume-specific definition, meaning \(\left[w^\text{pl}\right]=\frac{\text{N}}{\text{m}^2}\frac{\text{m}}{\text{m}} =\frac{\text{kg}\,\text{m}}{\text{s}^2\text{m}^2}\frac{\text{m}}{\text{m}}=\frac{\text{kg}\,\text{m}^2}{\text{s}^2\text{m}^3}=\frac{\text{J}}{\text{m}^3}\).
 
9
In the general three-dimensional case one talks about the elasto-plastic stiffness matrix \(\varvec{C}^\text{elpl}\).
 
10
In the general case with six stress and strain components (under consideration of the symmetry of the stress and strain tensor) an obvious relation only exists between effective stress and effective plastic strain. In the one-dimensional case however these parameters reduce to: \(\sigma _\text{eff}=|\sigma |\) and \(\varepsilon _\text{eff}^\text{pl}=|\varepsilon ^\text{pl}|\).
 
11
The explicit Euler procedure or polygon method (also Euler-Cauchy method) is the most simple procedure for the numerical solution of an initial value problem. The new stress state results according to this procedure in \(\sigma _{n+1}=\sigma _n+E^\text{elpl}_n\Delta \varepsilon \), whereupon the initial value problem can be named as \(\frac{\text{d} \sigma }{\text{d}\varepsilon }=E^\text{elpl}(\sigma ,\varepsilon )\) with \(\sigma (\varepsilon _0)=\sigma _0\).
 
12
In the general three-dimensional case the relation is applied on the stress vector and the increment of the strain vector: \(\varvec{\sigma }_{n+1}^\text{trial}=\varvec{\sigma }_n+\varvec{C}\Delta \varvec{\varepsilon }_n\).
 
13
At this point within the notation it is formally switched from \(\text{d}\lambda \) to \(\Delta \lambda \). Therefore the transition from the differential to the incremental notation occurs.
 
14
from the Latin ‘residuus’ for left or remaining.
 
15
The Newton method is usually used as follows for a one-dimensional function: \(x^{(i+1)}=x^{(i)}-\left(\frac{\text{d}f}{\text{d}x}(x^{(i)})\right)^{-1}\times f(x^{(i)})\).
 
16
Also referred to as consistent elasto-plastic tangent modulus matrix, consistent tangent stiffness matrix or algorithmic stiffness matrix.
 
17
At this point it is switched from \(\text{d}\lambda \) to \(\Delta \lambda \).
 
18
At this point for the considered linear bar elements a constant strain distribution per element results. In general, the strain results as a function of the element coordinates which is usually evaluated on the integration points. Therefore, one would in the general case normally define a strain \(vector \varvec{\varepsilon }\) per element, which combines the different strain values on the integration points. This however is unnecessary for a linear bar element. A scalar strain or alternative stress value is enough for the description.
 
19
Hereby the energy per unit volume is considered.
 
20
The convexity of a yield condition can be derived from the Drucker’s stability postulate [19, 20].
 
21
This plane has to stand vertically on the \(\sigma{-}|\varepsilon ^\text{pl}|\) plane. For a tensile test the plane has to go through the limit curve in the area \(\sigma > 0\). For a compression test the according straight line from the area \(\sigma < 0\) has to be chosen.
 
22
In the considered example with linear hardening, \(\tilde{E}\) is constant in the elastic range (increment 1–3) and in the plastic range (increment 4–10) and therefore not a function of \(u_2\). In the general case however \(\tilde{E}\) has to be differentiated as well.
 
23
One considers that in both sections or alternatively elements, the stress and strain are identical.
 
Literatur
1.
Zurück zum Zitat Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New YorkMATH Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New YorkMATH
2.
Zurück zum Zitat Drucker DC et al (1952) A more fundamental approach to plastic stress–strain relations. In: Sternberg E (ed) Proceedings of the 1st US national congress for applied mechanics. Edward Brothers Inc, Michigan, p 491 Drucker DC et al (1952) A more fundamental approach to plastic stress–strain relations. In: Sternberg E (ed) Proceedings of the 1st US national congress for applied mechanics. Edward Brothers Inc, Michigan, p 491
4.
Zurück zum Zitat de Borst R (1986) Non-linear analysis of frictional materials. Delft University of Technology, Dissertation de Borst R (1986) Non-linear analysis of frictional materials. Delft University of Technology, Dissertation
5.
Zurück zum Zitat Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, ChichesterMATH Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, ChichesterMATH
6.
Zurück zum Zitat Mang H, Hofstetter G (2008) Festigkeitslehre. Springer, Wien Mang H, Hofstetter G (2008) Festigkeitslehre. Springer, Wien
7.
Zurück zum Zitat Altenbach H, Altenbach J, Zolochevsky A (1995) Erweiterte Deformationsmodelle und Versagenskriterien der Werkstoffmechanik. Deutscher Verlag für Grundstoffindustrie, Stuttgart Altenbach H, Altenbach J, Zolochevsky A (1995) Erweiterte Deformationsmodelle und Versagenskriterien der Werkstoffmechanik. Deutscher Verlag für Grundstoffindustrie, Stuttgart
8.
Zurück zum Zitat Jirásek M, Bazant ZP (2002) Inelastic analysis of structures. Wiley, Chichester Jirásek M, Bazant ZP (2002) Inelastic analysis of structures. Wiley, Chichester
9.
Zurück zum Zitat Chakrabarty J (2009) Applied plasticity. Springer, New YorkMATH Chakrabarty J (2009) Applied plasticity. Springer, New YorkMATH
10.
Zurück zum Zitat Yu M-H, Zhang Y-Q, Qiang H-F, Ma G-W (2006) Generalized plasticity. Springer, Berlin Yu M-H, Zhang Y-Q, Qiang H-F, Ma G-W (2006) Generalized plasticity. Springer, Berlin
12.
Zurück zum Zitat Crisfield MA (2001) Non-linear finite element analysis of solids and structures. Bd. 1: essentials. Wiley, Chichester. Crisfield MA (2001) Non-linear finite element analysis of solids and structures. Bd. 1: essentials. Wiley, Chichester.
13.
Zurück zum Zitat Crisfield MA (2000) Non-linear finite element analysis of solids and structures. Bd. 2: advanced topics. Wiley, Chichester. Crisfield MA (2000) Non-linear finite element analysis of solids and structures. Bd. 2: advanced topics. Wiley, Chichester.
14.
Zurück zum Zitat de Souza Neto EA, Perić D, Owen DRJ (2008) Computational methods for plasticity: theory and applications. Wiley, ChichesterCrossRef de Souza Neto EA, Perić D, Owen DRJ (2008) Computational methods for plasticity: theory and applications. Wiley, ChichesterCrossRef
15.
Zurück zum Zitat Dunne F, Petrinic N (2005) Introduction to computational plasticity. Oxford University Press, OxfordMATH Dunne F, Petrinic N (2005) Introduction to computational plasticity. Oxford University Press, OxfordMATH
16.
Zurück zum Zitat Simo JC, Ortiz M (1985) A unified approach to finite deformation elastoplasticity based on the use of hyperelastic constitutive equations. Comput Method Appl M 49:221–245MATHCrossRef Simo JC, Ortiz M (1985) A unified approach to finite deformation elastoplasticity based on the use of hyperelastic constitutive equations. Comput Method Appl M 49:221–245MATHCrossRef
17.
Zurück zum Zitat Ortiz M, Popov EP (1985) Accuracy and stability of integration algorithms for elastoplastic constitutive equations. Int J Num Meth Eng 21:1561–1576MathSciNetMATHCrossRef Ortiz M, Popov EP (1985) Accuracy and stability of integration algorithms for elastoplastic constitutive equations. Int J Num Meth Eng 21:1561–1576MathSciNetMATHCrossRef
18.
Zurück zum Zitat Moran B, Ortiz M, Shih CF (1990) Formulation of implicit finite element methods for multiplicative finite deformation plasticity. Int J Num Meth Eng 29:483–514MathSciNetMATHCrossRef Moran B, Ortiz M, Shih CF (1990) Formulation of implicit finite element methods for multiplicative finite deformation plasticity. Int J Num Meth Eng 29:483–514MathSciNetMATHCrossRef
19.
20.
Zurück zum Zitat Lubliner J (1990) Plasticity theory. Macmillan Publishing Company, New YorkMATH Lubliner J (1990) Plasticity theory. Macmillan Publishing Company, New YorkMATH
21.
Zurück zum Zitat Balankin AS, Bugrimov AL (1992) A fractal theory of polymer plasticity. Polym Sci 34:246–248 Balankin AS, Bugrimov AL (1992) A fractal theory of polymer plasticity. Polym Sci 34:246–248
22.
Zurück zum Zitat Spencer AJM (1992) Plasticity theory for fibre-reinforced composites. J Eng Math 26:107–118MATHCrossRef Spencer AJM (1992) Plasticity theory for fibre-reinforced composites. J Eng Math 26:107–118MATHCrossRef
23.
Zurück zum Zitat Chen WF, Baladi GY (1985) Soil plasticity. Elsevier, AmsterdamMATH Chen WF, Baladi GY (1985) Soil plasticity. Elsevier, AmsterdamMATH
24.
Zurück zum Zitat Chen WF, Liu XL (1990) Limit analysis in soil mechanics. Elsevier, Amsterdam Chen WF, Liu XL (1990) Limit analysis in soil mechanics. Elsevier, Amsterdam
25.
Zurück zum Zitat Chen WF (1982) Plasticity in reinforced concrete. McGraw-Hill, New York Chen WF (1982) Plasticity in reinforced concrete. McGraw-Hill, New York
Metadaten
Titel
Plasticity
verfasst von
Andreas Öchsner
Markus Merkel
Copyright-Jahr
2013
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-31797-2_11

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.