Skip to main content

2013 | OriginalPaper | Buchkapitel

7. Point Spectrum: Linear Hamiltonian Systems

verfasst von : Todd Kapitula, Keith Promislow

Erschienen in: Spectral and Dynamical Stability of Nonlinear Waves

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hamiltonian systems are about balance, with the energy and other invariants preserved under the flow. For a spatially localized critical point of a Hamiltonian system, the balance is reflected in the symmetry of the spectrum, which typically pins the essential spectrum to the imaginary axis in unweighted spaces. The mechanism for bifurcation in Hamiltonian systems thus falls upon the point spectrum.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
[13]
Zurück zum Zitat C. De Angelis. Self-trapped propagation in the nonlinear cubic-quintic Schrödinger equation: a variational approach. IEEE J. Quantum Elect., 30(3):818–821, 1994.CrossRef C. De Angelis. Self-trapped propagation in the nonlinear cubic-quintic Schrödinger equation: a variational approach. IEEE J. Quantum Elect., 30(3):818–821, 1994.CrossRef
[36]
Zurück zum Zitat J. Bona, P. Souganidis, and W. Strauss. Stability and instability of solitary waves of Korteweg–de Vries type. Proc. R. Soc. London A, 411:395–412, 1987.MathSciNetMATHCrossRef J. Bona, P. Souganidis, and W. Strauss. Stability and instability of solitary waves of Korteweg–de Vries type. Proc. R. Soc. London A, 411:395–412, 1987.MathSciNetMATHCrossRef
[44]
Zurück zum Zitat J. Bronski, M. Johnson, and T. Kapitula. An instability index theory for quadratic pencils and applications. preprint, 2012. J. Bronski, M. Johnson, and T. Kapitula. An instability index theory for quadratic pencils and applications. preprint, 2012.
[54]
Zurück zum Zitat P. Chossat and R. Lauterbach. Methods in Equivariant Bifurcations and Dynamical Systems, volume 15 of Advanced Series in Nonlinear Dynamics. World Scientific, Singapore, 2000.CrossRef P. Chossat and R. Lauterbach. Methods in Equivariant Bifurcations and Dynamical Systems, volume 15 of Advanced Series in Nonlinear Dynamics. World Scientific, Singapore, 2000.CrossRef
[55]
Zurück zum Zitat M. Chugunova and D. Pelinovsky. On quadratic eigenvalue problems arising in stability of discrete vortices. Lin. Alg. Appl., 431:962–973, 2009.MathSciNetMATHCrossRef M. Chugunova and D. Pelinovsky. On quadratic eigenvalue problems arising in stability of discrete vortices. Lin. Alg. Appl., 431:962–973, 2009.MathSciNetMATHCrossRef
[56]
Zurück zum Zitat M. Chugunova and D. Pelinovsky. Count of eigenvalues in the generalized eigenvalue problem. J. Math. Phys., 51(5):052901, 2010. M. Chugunova and D. Pelinovsky. Count of eigenvalues in the generalized eigenvalue problem. J. Math. Phys., 51(5):052901, 2010.
[66]
Zurück zum Zitat B. Deconinck and T. Kapitula. On the spectral and orbital stability of spatially periodic stationary solutions of generalized Korteweg–de Vries equations. submitted. B. Deconinck and T. Kapitula. On the spectral and orbital stability of spatially periodic stationary solutions of generalized Korteweg–de Vries equations. submitted.
[97]
Zurück zum Zitat S. Gatz and J. Herrmann. Soliton propagation in materials with saturable nonlinearity. J. Opt. Soc. Am. B, 8(11):2296–2302, 1991.CrossRef S. Gatz and J. Herrmann. Soliton propagation in materials with saturable nonlinearity. J. Opt. Soc. Am. B, 8(11):2296–2302, 1991.CrossRef
[107]
Zurück zum Zitat M. Grillakis. Linearized instability for nonlinear Schrödinger and Klein–Gordon equations. Comm. Pure Appl. Math., 46:747–774, 1988.MathSciNetCrossRef M. Grillakis. Linearized instability for nonlinear Schrödinger and Klein–Gordon equations. Comm. Pure Appl. Math., 46:747–774, 1988.MathSciNetCrossRef
[108]
Zurück zum Zitat M. Grillakis. Analysis of the linearization around a critical point of an infinite-dimensional Hamiltonian system. Comm. Pure Appl. Math., 43: 299–333, 1990.MathSciNetMATHCrossRef M. Grillakis. Analysis of the linearization around a critical point of an infinite-dimensional Hamiltonian system. Comm. Pure Appl. Math., 43: 299–333, 1990.MathSciNetMATHCrossRef
[110]
Zurück zum Zitat M. Grillakis, J. Shatah, and W. Strauss. Stability theory of solitary waves in the presence of symmetry, II. J. Funct. Anal., 94:308–348, 1990.MathSciNetMATHCrossRef M. Grillakis, J. Shatah, and W. Strauss. Stability theory of solitary waves in the presence of symmetry, II. J. Funct. Anal., 94:308–348, 1990.MathSciNetMATHCrossRef
[127]
Zurück zum Zitat M. Hǎrǎguş and T. Kapitula. On the spectra of periodic waves for infinite-dimensional Hamiltonian systems. Physica D, 237(20):2649–2671, 2008.MathSciNetCrossRef M. Hǎrǎguş and T. Kapitula. On the spectra of periodic waves for infinite-dimensional Hamiltonian systems. Physica D, 237(20):2649–2671, 2008.MathSciNetCrossRef
[130]
Zurück zum Zitat R. Jackson and M. Weinstein. Geometric analysis of bifurcation and symmetry breaking in a Gross–Pitaevskii equation. J. Stat. Phys., 116: 881–905, 2004.MathSciNetMATHCrossRef R. Jackson and M. Weinstein. Geometric analysis of bifurcation and symmetry breaking in a Gross–Pitaevskii equation. J. Stat. Phys., 116: 881–905, 2004.MathSciNetMATHCrossRef
[132]
Zurück zum Zitat M. Johansson and Y. Kivshar. Discreteness-induced oscillatory instabilities of dark solitons. Phys. Rev. Lett., 82(1):85–88, 1999.CrossRef M. Johansson and Y. Kivshar. Discreteness-induced oscillatory instabilities of dark solitons. Phys. Rev. Lett., 82(1):85–88, 1999.CrossRef
[135]
Zurück zum Zitat C.K.R.T. Jones. Instability of standing waves for nonlinear Schrödinger-type equations. Ergod. Th. & Dynam. Sys., 8:119–138, 1988.MATHCrossRef C.K.R.T. Jones. Instability of standing waves for nonlinear Schrödinger-type equations. Ergod. Th. & Dynam. Sys., 8:119–138, 1988.MATHCrossRef
[136]
Zurück zum Zitat C.K.R.T. Jones and J. Moloney. Instability of standing waves in nonlinear optical waveguides. Phys. Lett. A, 117:175–180, 1986a.CrossRef C.K.R.T. Jones and J. Moloney. Instability of standing waves in nonlinear optical waveguides. Phys. Lett. A, 117:175–180, 1986a.CrossRef
[137]
Zurück zum Zitat C.K.R.T. Jones and J. Moloney. Stability and instability of nonlinear standing waves in planar optical waveguides. In H. Gibbs, P. Mandel, N. Peyghambarian, and S. Smith, editors, Optical Bistability III, volume 8 of Proceedings in Physics. Springer-Verlag, New York, 1986b. C.K.R.T. Jones and J. Moloney. Stability and instability of nonlinear standing waves in planar optical waveguides. In H. Gibbs, P. Mandel, N. Peyghambarian, and S. Smith, editors, Optical Bistability III, volume 8 of Proceedings in Physics. Springer-Verlag, New York, 1986b.
[147]
Zurück zum Zitat T. Kapitula and P. Kevrekidis. Linear stability of perturbed Hamiltonian systems: theory and a case example. J. Phys. A: Math. Gen., 37(30): 7509–7526, 2004.MathSciNetMATHCrossRef T. Kapitula and P. Kevrekidis. Linear stability of perturbed Hamiltonian systems: theory and a case example. J. Phys. A: Math. Gen., 37(30): 7509–7526, 2004.MathSciNetMATHCrossRef
[148]
Zurück zum Zitat T. Kapitula and K. Promislow. Stability indices for constrained self-adjoint operators. Proc. Amer. Math. Soc., 140(3):865–880, 2012.MathSciNetMATHCrossRef T. Kapitula and K. Promislow. Stability indices for constrained self-adjoint operators. Proc. Amer. Math. Soc., 140(3):865–880, 2012.MathSciNetMATHCrossRef
[150]
Zurück zum Zitat T. Kapitula and B. Sandstede. A novel instability mechanism for bright solitary-wave solutions to the cubic–quintic Ginzburg–Landau equation. J. Opt. Soc. Am. B, 15:2757–2762, 1998a.MathSciNetCrossRef T. Kapitula and B. Sandstede. A novel instability mechanism for bright solitary-wave solutions to the cubic–quintic Ginzburg–Landau equation. J. Opt. Soc. Am. B, 15:2757–2762, 1998a.MathSciNetCrossRef
[151]
Zurück zum Zitat T. Kapitula and B. Sandstede. Instability mechanism for bright solitary wave solutions to the cubic–quintic Ginzburg–Landau equation. J. Opt. Soc. Am. B, 15(11):2757–2762, 1998b.MathSciNetCrossRef T. Kapitula and B. Sandstede. Instability mechanism for bright solitary wave solutions to the cubic–quintic Ginzburg–Landau equation. J. Opt. Soc. Am. B, 15(11):2757–2762, 1998b.MathSciNetCrossRef
[155]
Zurück zum Zitat T. Kapitula and A. Stefanov. A Hamiltonian–Krein (instability) index theory for KdV-like eigenvalue problems. preprint, 2013. T. Kapitula and A. Stefanov. A Hamiltonian–Krein (instability) index theory for KdV-like eigenvalue problems. preprint, 2013.
[156]
Zurück zum Zitat T. Kapitula, P. Kevrekidis, and B. Malomed. Stability of multiple pulses in discrete systems. Phys. Rev. E, 63(036604), 2001. T. Kapitula, P. Kevrekidis, and B. Malomed. Stability of multiple pulses in discrete systems. Phys. Rev. E, 63(036604), 2001.
[157]
Zurück zum Zitat T. Kapitula, P. Kevrekidis, and B. Sandstede. Counting eigenvalues via the Krein signature in infinite-dimensional Hamiltonian systems. Physica D, 195(3&4): 263–282, 2004a.MathSciNetMATHCrossRef T. Kapitula, P. Kevrekidis, and B. Sandstede. Counting eigenvalues via the Krein signature in infinite-dimensional Hamiltonian systems. Physica D, 195(3&4): 263–282, 2004a.MathSciNetMATHCrossRef
[159]
Zurück zum Zitat T. Kapitula, P. Kevrekidis, and B. Sandstede. Addendum: Counting eigenvalues via the Krein signature in infinite-dimensional Hamiltonian systems. Physica D, 201(1&2):199–201, 2005.MathSciNetMATHCrossRef T. Kapitula, P. Kevrekidis, and B. Sandstede. Addendum: Counting eigenvalues via the Krein signature in infinite-dimensional Hamiltonian systems. Physica D, 201(1&2):199–201, 2005.MathSciNetMATHCrossRef
[161]
Zurück zum Zitat T. Kapitula, E. Hibma, H.-P. Kim, and J. Timkovich. Instability indices for matrix pencils. preprint, 2013. T. Kapitula, E. Hibma, H.-P. Kim, and J. Timkovich. Instability indices for matrix pencils. preprint, 2013.
[170]
[174]
Zurück zum Zitat Y. Kivshar, D. Pelinovsky, T. Cretegny, and M. Peyrard. Internal modes of solitary waves. Phys. Rev. Lett., 80(23):5032–5035, 1998.CrossRef Y. Kivshar, D. Pelinovsky, T. Cretegny, and M. Peyrard. Internal modes of solitary waves. Phys. Rev. Lett., 80(23):5032–5035, 1998.CrossRef
[175]
Zurück zum Zitat Y. Kodama, M. Romagnoli, and S. Wabnitz. Soliton stability and interactions in fibre lasers. Elect. Lett., 28(21):1981–1983, 1992.CrossRef Y. Kodama, M. Romagnoli, and S. Wabnitz. Soliton stability and interactions in fibre lasers. Elect. Lett., 28(21):1981–1983, 1992.CrossRef
[176]
Zurück zum Zitat R. Kollár. Homotopy method for nonlinear eigenvalue pencils with applications. SIAM J. Math. Anal., 43(2):612–633, 2011.MathSciNetMATHCrossRef R. Kollár. Homotopy method for nonlinear eigenvalue pencils with applications. SIAM J. Math. Anal., 43(2):612–633, 2011.MathSciNetMATHCrossRef
[177]
Zurück zum Zitat R. Kollár and P. Miller. Graphical Krein signature theory and Evans–Krein functions. preprint, 2013. R. Kollár and P. Miller. Graphical Krein signature theory and Evans–Krein functions. preprint, 2013.
[178]
Zurück zum Zitat M. Krein. Topics in Differential and Integral Equations and Operator Theory, volume 7 of Operator Theory: Advances and Applications, pp. 1–98. Birkhäuser, Basel, 1983. M. Krein. Topics in Differential and Integral Equations and Operator Theory, volume 7 of Operator Theory: Advances and Applications, pp. 1–98. Birkhäuser, Basel, 1983.
[180]
Zurück zum Zitat S. Lafortune and J. Lega. Spectral stability of local deformations of an elastic rod: Hamiltonian formalism. SIAM J. Math. Anal., 36(6): 1726–1741, 2005.MathSciNetMATHCrossRef S. Lafortune and J. Lega. Spectral stability of local deformations of an elastic rod: Hamiltonian formalism. SIAM J. Math. Anal., 36(6): 1726–1741, 2005.MathSciNetMATHCrossRef
[194]
Zurück zum Zitat M. Lukas, D. Pelinovsky, and P. Kevrekidis. Lyapunov–Schmidt reduction algorithm for three-dimensional discrete vortices. Physica D, 212:339–350, 2008.MathSciNetCrossRef M. Lukas, D. Pelinovsky, and P. Kevrekidis. Lyapunov–Schmidt reduction algorithm for three-dimensional discrete vortices. Physica D, 212:339–350, 2008.MathSciNetCrossRef
[196]
Zurück zum Zitat R. MacKay. Stability of equilibria of Hamiltonian systems. In R. MacKay and J. Meiss, editors, Hamiltonian Dynamical Systems, pp. 137–153. Adam Hilger, Briston, UK, 1987. R. MacKay. Stability of equilibria of Hamiltonian systems. In R. MacKay and J. Meiss, editors, Hamiltonian Dynamical Systems, pp. 137–153. Adam Hilger, Briston, UK, 1987.
[197]
Zurück zum Zitat R. MacKay. Movement of eigenvalues of Hamiltonian equilibria under non-Hamiltonian perturbation. Phys. Lett. A, 155:266–268, 1991.MathSciNetCrossRef R. MacKay. Movement of eigenvalues of Hamiltonian equilibria under non-Hamiltonian perturbation. Phys. Lett. A, 155:266–268, 1991.MathSciNetCrossRef
[214]
Zurück zum Zitat E. Ostrovskaya, Y. Kivshar, D. Skryabin, and W. Firth. Stability of multihump optical solitons. Phys. Rev. Lett., 83(2):296–299, 1999.MATHCrossRef E. Ostrovskaya, Y. Kivshar, D. Skryabin, and W. Firth. Stability of multihump optical solitons. Phys. Rev. Lett., 83(2):296–299, 1999.MATHCrossRef
[222]
Zurück zum Zitat D. Pelinovsky. Inertia law for spectral stability of solitary waves in coupled nonlinear Schrödinger equations. Proc. Royal Soc. London A, 461: 783–812, 2005.MathSciNetMATHCrossRef D. Pelinovsky. Inertia law for spectral stability of solitary waves in coupled nonlinear Schrödinger equations. Proc. Royal Soc. London A, 461: 783–812, 2005.MathSciNetMATHCrossRef
[224]
Zurück zum Zitat D. Pelinovsky. Spectral stability of nonlinear waves in KdV-type evolution equations. preprint, 2013. D. Pelinovsky. Spectral stability of nonlinear waves in KdV-type evolution equations. preprint, 2013.
[226]
Zurück zum Zitat D. Pelinovsky and P. Kevrekidis. Stability of discrete dark solitons in nonlinear Schrödinger lattices. J. Phys. A: Math. Gen., 41:185206, 2008b.MathSciNetCrossRef D. Pelinovsky and P. Kevrekidis. Stability of discrete dark solitons in nonlinear Schrödinger lattices. J. Phys. A: Math. Gen., 41:185206, 2008b.MathSciNetCrossRef
[227]
Zurück zum Zitat D. Pelinovsky and Y. Kivshar. Stability criterion for multicomponent solitary waves. Phys. Rev. E, 62(6):8668–8676, 2000.MathSciNetCrossRef D. Pelinovsky and Y. Kivshar. Stability criterion for multicomponent solitary waves. Phys. Rev. E, 62(6):8668–8676, 2000.MathSciNetCrossRef
[228]
Zurück zum Zitat D. Pelinovsky and A. Sakovich. Internal modes of discrete solitons near the anti-continuum limit of the dNLS equation. Physica D, 240:265–281, 2011.MathSciNetMATHCrossRef D. Pelinovsky and A. Sakovich. Internal modes of discrete solitons near the anti-continuum limit of the dNLS equation. Physica D, 240:265–281, 2011.MathSciNetMATHCrossRef
[231]
Zurück zum Zitat D. Pelinovsky and J. Yang. Instabilities of multihump vector solitons in coupled nonlinear Schrödinger equations. Stud. Appl. Math., 115(1): 109–137, 2005.MathSciNetMATHCrossRef D. Pelinovsky and J. Yang. Instabilities of multihump vector solitons in coupled nonlinear Schrödinger equations. Stud. Appl. Math., 115(1): 109–137, 2005.MathSciNetMATHCrossRef
[232]
Zurück zum Zitat D. Pelinovsky, P. Kevrekidis, and D. Frantzeskakis. Persistence and stability of discrete vortices in nonlinear Schrödinger lattices. Physica D, 212:20–53, 2005a.MathSciNetMATHCrossRef D. Pelinovsky, P. Kevrekidis, and D. Frantzeskakis. Persistence and stability of discrete vortices in nonlinear Schrödinger lattices. Physica D, 212:20–53, 2005a.MathSciNetMATHCrossRef
[233]
Zurück zum Zitat D. Pelinovsky, P. Kevrekidis, and D. Frantzeskakis. Stability of discrete solitons in nonlinear Schrödinger lattices. Physica D, 212:1–19, 2005b.MathSciNetMATHCrossRef D. Pelinovsky, P. Kevrekidis, and D. Frantzeskakis. Stability of discrete solitons in nonlinear Schrödinger lattices. Physica D, 212:1–19, 2005b.MathSciNetMATHCrossRef
[264]
Zurück zum Zitat D. Skryabin. Energy of internal modes of nonlinear waves and complex frequencies due to symmetry breaking. Phys. Rev. E, 64(055601(R)), 2001. D. Skryabin. Energy of internal modes of nonlinear waves and complex frequencies due to symmetry breaking. Phys. Rev. E, 64(055601(R)), 2001.
[268]
Zurück zum Zitat J. Soto-Crespo, N. Akhmediev, and V. Afanasjev. Stability of the pulselike solutions of the quintic complex Ginzburg–Landau equation. J. Opt. Soc. Am. B, 13(7): 1439–1449, 1996.CrossRef J. Soto-Crespo, N. Akhmediev, and V. Afanasjev. Stability of the pulselike solutions of the quintic complex Ginzburg–Landau equation. J. Opt. Soc. Am. B, 13(7): 1439–1449, 1996.CrossRef
[275]
Zurück zum Zitat V. Vougalter and D. Pelinovsky. Eigenvalues of zero energy in the linearized NLS problem. J. Math. Phys., 47:062701, 2006.MathSciNetCrossRef V. Vougalter and D. Pelinovsky. Eigenvalues of zero energy in the linearized NLS problem. J. Math. Phys., 47:062701, 2006.MathSciNetCrossRef
[285]
Zurück zum Zitat A. Yew. Stability analysis of multipulses in nonlinearly coupled Schrödinger equations. Indiana U. Math. J., 49(3):1079–1124, 2000.MathSciNetMATHCrossRef A. Yew. Stability analysis of multipulses in nonlinearly coupled Schrödinger equations. Indiana U. Math. J., 49(3):1079–1124, 2000.MathSciNetMATHCrossRef
[286]
Zurück zum Zitat A. Yew, B. Sandstede, and C.K.R.T. Jones. Instability of multiple pulses in coupled nonlinear Schrödinger equations. Phys. Rev. E, 61(5):5886–5892, 2000.MathSciNetCrossRef A. Yew, B. Sandstede, and C.K.R.T. Jones. Instability of multiple pulses in coupled nonlinear Schrödinger equations. Phys. Rev. E, 61(5):5886–5892, 2000.MathSciNetCrossRef
Metadaten
Titel
Point Spectrum: Linear Hamiltonian Systems
verfasst von
Todd Kapitula
Keith Promislow
Copyright-Jahr
2013
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-6995-7_7