1.
Flenley, J.: The problem of pollen recognition. In: Clowes, M.B., Penny, J.P. (eds.) Problems in Picture Interpretation, pp. 141–145. CSIRO, Canberra (1968)
2.
Treloar, W.J., Taylor, G.E., Flenley, J.R.: Towards automation of palynology 1: analysis of pollen shape and ornamentation using simple geometric measures, derived from scanning electron microscope images. J. Quat. Sci.
19, 745–754 (2004)
CrossRef
3.
Mildenhall, D., Wiltshire, P., Bryant, V.: Forensic palynology: why do it and how it works. Foren. Sci. Int.
163, 163–172 (2006). Forensic Palynology
CrossRef
4.
Hopping, C.: Palynology and the oil industry. Rev. Palaeobot. Palynol.
2, 23–48 (1967)
CrossRef
5.
del Pozo-Banos, M., Ticay-Rivas, J.R., Alonso, J.B., Travieso, C.M.: Features extraction techniques for pollen grain classification. Neurocomputing
150(Part B), 377–391 (2015)
CrossRef
6.
Dell’Anna, R., Cristofori, A., Gottardini, E., Monti, F.: A critical presentation of innovative techniques for automated pollen identification in aerobiological monitoring networks. Pollen: Structure, Types and Effects, 273–288 (2010)
7.
Travieso, C.M., Briceno, J.C., Ticay-Rivas, J.R., Alonso, J.B.: Pollen classification based on contour features. In: 2011 15th IEEE International Conference on Intelligent Engineering Systems (INES), pp. 17–21. IEEE (2011)
8.
García, N.M., Chaves, V.A.E., Briceño, J.C., Travieso, C.M.: Pollen grains contour analysis on verification approach. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, S.-B. (eds.) HAIS 2012. LNCS (LNAI), vol. 7208, pp. 521–532. Springer, Heidelberg (2012). doi:
10.1007/978-3-642-28942-2_47
CrossRef
9.
Xie, Y., OhEigeartaigh, M.: 3D discrete spherical Fourier descriptors based on surface curvature voxels for pollen classification. In: 2010 WASE International Conference on Information Engineering (ICIE), vol. 1, pp. 207–211. IEEE (2010)
10.
Fernandez-Delgado, M., Carrion, P., Cernadas, E., Galvez, J.F.: Improved classification of pollen texture images using SVM and MLP (2003)
11.
Da Silva, D.S., Quinta, L.N.B., Gonccalves, A.B., Pistori, H., Borth, M.R.: Application of wavelet transform in the classification of pollen grains. Afr. J. Agric. Res.
9, 908–913 (2014)
CrossRef
12.
Ticay-Rivas, J.R., Pozo-Baños, M., Travieso, C.M., Arroyo-Hernández, J., Pérez, S.T., Alonso, J.B., Mora-Mora, F.: Pollen classification based on geometrical, descriptors and colour features using decorrelation stretching method. In: Iliadis, L., Maglogiannis, I., Papadopoulos, H. (eds.) AIAI/EANN -2011. IAICT, vol. 364, pp. 342–349. Springer, Heidelberg (2011). doi:
10.1007/978-3-642-23960-1_41
CrossRef
13.
Chica, M.: Authentication of bee pollen grains in bright-field microscopy by combining one-class classification techniques and image processing. Microsc. Res. Tech.
75, 1475–1485 (2012)
CrossRef
14.
Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., Ng, A.Y.: Multimodal deep learning. In: Proceedings of the 28th International Conference on Machine Learning, ICML 2011, June 28 – July 2 2011, Bellevue, Washington, USA, pp. 689–696 (2011)
15.
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In Pereira, F., Burges, C., Bottou, L., Weinberger, K. (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates Inc. (2012)
16.
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res.
15, 1929–1958 (2014)
MathSciNetMATH
17.
Ba, J., Frey, B.: Adaptive dropout for training deep neural networks. In: Advances in Neural Information Processing Systems, pp. 3084–3092 (2013)
18.
Vedaldi, A., Lenc, K.: MatConvNet - convolutional neural networks for MATLAB. CoRR abs/1412.4564 (2014)
19.
Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? ArXiv e-prints (2014)
20.
Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details: delving deep into convolutional nets. In: British Machine Vision Conference (2014)
21.
Marcos, J.V., Nava, R., Cristobal, G., Redondo, R., Escalante-Ramirez, B., Bueno, G., Deniz, O., Gonzalez-Porto, A., Pardo, C., Chung, F., Rodriguez, T.: Automated pollen identification using microscopic imaging and texture analysis. Micron
68, 36–46 (2015)
CrossRef
22.
Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classification tasks. Inf. Process. Manage.
45(4), 427–437 (2009). Elsevier
CrossRef