Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 13/2018

27.04.2018

Poly(ether ether ketone) grafted with sulfoalkylamine for highly sensitive humidity sensor with small hysteresis

verfasst von: Zhi Shao, Zhuang Zhuang, Haidan Lin, Chengji Zhao

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 13/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Here, a series of novel poly(ether ether ketone) containing sulfoalkylamine pendant groups (SNPEEK-x) were synthesized by grafting copolymerization reaction. The chemical structure of SNPEEK-x was identified by 1H NMR and the morphology of all films was measured by SAXS and TEM. The impedance varied for five orders of magnitude (from 107 to 102 Ω) as the relative humidity increasing from 11 to 97% RH. At the same time, all samples exhibited a fast response time of less than 3 s, outstanding repeatability and good long-term durability against high humidity. Especially, SNPEEK-x sensors displayed an extremely small humidity hysteresis in the impedance versus RH relationship during absorption and desorption processes. These essential properties of humidity sensors such as the impedance at various humidity, sensitivity, linearity and humidity hysteresis revealed that SNPEEK-x are suitable to be used as humidity sensors.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Z. Chen, C. Lu, Humidity sensors: a review of materials and mechanisms. Sens. Lett. 3, 274–295 (2005)CrossRef Z. Chen, C. Lu, Humidity sensors: a review of materials and mechanisms. Sens. Lett. 3, 274–295 (2005)CrossRef
2.
Zurück zum Zitat J. Ying, C. Wan, P. He, Sol–gel processed TiO2–K2O–LiZnVO4 ceramic thin films as innovative humidity sensors. Sens. Actuators B 62, 165–170 (2000)CrossRef J. Ying, C. Wan, P. He, Sol–gel processed TiO2–K2O–LiZnVO4 ceramic thin films as innovative humidity sensors. Sens. Actuators B 62, 165–170 (2000)CrossRef
3.
Zurück zum Zitat M. Matsuguchi, T. Uno, A. Yamanaka, T. Kuroiwa, T. Ogura, Y. Sakai, Improvements in the long-term stability of a LiCl dew-point sensor using cross-linked porous poly(vinyl alcohol) film. Sens. Actuators B 97, 74–80 (2004)CrossRef M. Matsuguchi, T. Uno, A. Yamanaka, T. Kuroiwa, T. Ogura, Y. Sakai, Improvements in the long-term stability of a LiCl dew-point sensor using cross-linked porous poly(vinyl alcohol) film. Sens. Actuators B 97, 74–80 (2004)CrossRef
4.
Zurück zum Zitat C. Chen, Humidity in plant tissue culture vessels. Biosyst. Eng. 88, 231–241 (2004)CrossRef C. Chen, Humidity in plant tissue culture vessels. Biosyst. Eng. 88, 231–241 (2004)CrossRef
5.
Zurück zum Zitat Y. Sakai, Y. Sadaoka, M. Matsuguchi, H. Sakai, Humidity sensor durable at high humidity using simultaneously crosslinked and quaternized poly(chloromethyl styrene). Sens. Actuators B 25, 689–691 (1995)CrossRef Y. Sakai, Y. Sadaoka, M. Matsuguchi, H. Sakai, Humidity sensor durable at high humidity using simultaneously crosslinked and quaternized poly(chloromethyl styrene). Sens. Actuators B 25, 689–691 (1995)CrossRef
6.
Zurück zum Zitat Y. Shi, Y. Luo, W. Zhao, C. Shang, Y. Wang, Y. Chen, A radiosonde using a humidity sensor array with a platinum resistance heater and multi-sensor data fusion. Sensors 13, 8977–8996 (2013)CrossRef Y. Shi, Y. Luo, W. Zhao, C. Shang, Y. Wang, Y. Chen, A radiosonde using a humidity sensor array with a platinum resistance heater and multi-sensor data fusion. Sensors 13, 8977–8996 (2013)CrossRef
7.
Zurück zum Zitat K.-J. Park, M.-S. Gong, A water durable resistive humidity sensor based on rigid sulfonated polybenzimidazole and their properties. Sens. Actuators B 246, 53–60 (2017)CrossRef K.-J. Park, M.-S. Gong, A water durable resistive humidity sensor based on rigid sulfonated polybenzimidazole and their properties. Sens. Actuators B 246, 53–60 (2017)CrossRef
8.
Zurück zum Zitat S.N. Patil, A.M. Pawar, S.K. Tilekar, B.P. Ladgaonkar, Investigation of magnesium substituted nano particle zinc ferrites for relative humidity sensors. Sens. Actuators A 244, 35–43 (2016)CrossRef S.N. Patil, A.M. Pawar, S.K. Tilekar, B.P. Ladgaonkar, Investigation of magnesium substituted nano particle zinc ferrites for relative humidity sensors. Sens. Actuators A 244, 35–43 (2016)CrossRef
9.
Zurück zum Zitat A.F. Abdulameer, M.H. Suhail, O.G. Abdullah, I.M. Al-Essa, Fabrication and characterization of NiPcTs organic semiconductors based surface type capacitive–resistive humidity sensors. J. Mater. Sci.: Mater. Electron. 28, 13472–13477 (2017) A.F. Abdulameer, M.H. Suhail, O.G. Abdullah, I.M. Al-Essa, Fabrication and characterization of NiPcTs organic semiconductors based surface type capacitive–resistive humidity sensors. J. Mater. Sci.: Mater. Electron. 28, 13472–13477 (2017)
10.
Zurück zum Zitat X. Chen, X. Chen, N. Li, X. Ding, X. Zhao, A QCM humidity sensors based on GO/Nafion composite films with enhanced sensitivity. IEEE Sens. J. 16, 8874–8883 (2016) X. Chen, X. Chen, N. Li, X. Ding, X. Zhao, A QCM humidity sensors based on GO/Nafion composite films with enhanced sensitivity. IEEE Sens. J. 16, 8874–8883 (2016)
11.
Zurück zum Zitat B. Adhikari, S. Majumdar, Polymers in sensor applications. Prog. Polym. Sci. 29, 699–766 (2004)CrossRef B. Adhikari, S. Majumdar, Polymers in sensor applications. Prog. Polym. Sci. 29, 699–766 (2004)CrossRef
12.
Zurück zum Zitat M. Bayhan, N. Kavasoğlu, A study on the humidity sensing properties of ZnCr2O4–K2CrO4 ionic conductive ceramic sensor. Sens. Actuators B 117, 261–265 (2006)CrossRef M. Bayhan, N. Kavasoğlu, A study on the humidity sensing properties of ZnCr2O4–K2CrO4 ionic conductive ceramic sensor. Sens. Actuators B 117, 261–265 (2006)CrossRef
13.
Zurück zum Zitat K.-S. Chou, T.-K. Lee, F.-J. Liu, Sensing mechanism of a porous ceramic as humidity sensor. Sens. Actuators B 56, 106–111 (1999)CrossRef K.-S. Chou, T.-K. Lee, F.-J. Liu, Sensing mechanism of a porous ceramic as humidity sensor. Sens. Actuators B 56, 106–111 (1999)CrossRef
14.
Zurück zum Zitat M.D. Fernández-Ramos, Y.F. Ordóñez, L.F. Capitán-Vallvey, I.M.P. de Vargas-Sansalvador, J. Ballesta-Claver, Optical humidity sensor using methylene blue immobilized on a hydrophilic polymer. Sens. Actuators B 220, 528–533 (2015)CrossRef M.D. Fernández-Ramos, Y.F. Ordóñez, L.F. Capitán-Vallvey, I.M.P. de Vargas-Sansalvador, J. Ballesta-Claver, Optical humidity sensor using methylene blue immobilized on a hydrophilic polymer. Sens. Actuators B 220, 528–533 (2015)CrossRef
15.
Zurück zum Zitat A. Foucaran, B. Sorli, M. Garcia, F. Pascal-Delannoy, A. Giani, A. Boyer, Porous silicon layer coupled with thermoelectric cooler: a humidity sensor. Sens. Actuators A 79, 189–193 (2000)CrossRef A. Foucaran, B. Sorli, M. Garcia, F. Pascal-Delannoy, A. Giani, A. Boyer, Porous silicon layer coupled with thermoelectric cooler: a humidity sensor. Sens. Actuators A 79, 189–193 (2000)CrossRef
16.
Zurück zum Zitat K. Jiang, H. Zhao, T. Fei, H. Dou, T. Zhang, A guest/host composite of Fe(NO3)3/nanoporous polytriphenylamine assembly for humidity sensor. Sens. Actuators B 222, 440–446 (2016)CrossRef K. Jiang, H. Zhao, T. Fei, H. Dou, T. Zhang, A guest/host composite of Fe(NO3)3/nanoporous polytriphenylamine assembly for humidity sensor. Sens. Actuators B 222, 440–446 (2016)CrossRef
17.
Zurück zum Zitat T. Nenov, Z. Nenova, Multi-objective optimization of the parameters of TiO2-based ceramic humidity sensors. Ceram. Int. 39, 4465–4473 (2013)CrossRef T. Nenov, Z. Nenova, Multi-objective optimization of the parameters of TiO2-based ceramic humidity sensors. Ceram. Int. 39, 4465–4473 (2013)CrossRef
18.
Zurück zum Zitat W. Qu, W. Wlodarski, J.-U. Meyer, Comparative study on micromorphology and humidity sensitive properties of thin-film and thick-film humidity sensors based on semiconducting MnWO4. Sens. Actuators B 64, 76–82 (2000)CrossRef W. Qu, W. Wlodarski, J.-U. Meyer, Comparative study on micromorphology and humidity sensitive properties of thin-film and thick-film humidity sensors based on semiconducting MnWO4. Sens. Actuators B 64, 76–82 (2000)CrossRef
19.
Zurück zum Zitat F. Yakuphanoglu, Semiconducting and quartz microbalance (QCM) humidity sensor properties of TiO2 by sol gel calcination method. Solid State Sci. 14, 673–676 (2012)CrossRef F. Yakuphanoglu, Semiconducting and quartz microbalance (QCM) humidity sensor properties of TiO2 by sol gel calcination method. Solid State Sci. 14, 673–676 (2012)CrossRef
20.
Zurück zum Zitat C.-W. Lee, M.-S. Gong, Resistive humidity sensor using phosphonium salt-containing polyelectrolytes based on the mutually cross-linkable copolymers. Macromol. Res. 11, 322–327 (2003)CrossRef C.-W. Lee, M.-S. Gong, Resistive humidity sensor using phosphonium salt-containing polyelectrolytes based on the mutually cross-linkable copolymers. Macromol. Res. 11, 322–327 (2003)CrossRef
21.
Zurück zum Zitat E. Traversa, Ceramic sensors for humidity detection: the state-of-the-art and future developments. Sens. Actuators B 23, 135–156 (1995)CrossRef E. Traversa, Ceramic sensors for humidity detection: the state-of-the-art and future developments. Sens. Actuators B 23, 135–156 (1995)CrossRef
22.
Zurück zum Zitat K.L. Rauen, D.A. Smith, W.R. Heineman, J. Johnson, R. Seguin, P. Stoughton, Humidity sensor based on conductivity measurements of a poly(dimethyldiallylammonium chloride) polymer film. Sens. Actuators B 17, 61–68 (1993)CrossRef K.L. Rauen, D.A. Smith, W.R. Heineman, J. Johnson, R. Seguin, P. Stoughton, Humidity sensor based on conductivity measurements of a poly(dimethyldiallylammonium chloride) polymer film. Sens. Actuators B 17, 61–68 (1993)CrossRef
23.
Zurück zum Zitat Y. Sakai, Y. Sadaoka, M. Matsuguchi, Humidity sensors based on polymer thin films. Sens. Actuators B 35, 85–90 (1996)CrossRef Y. Sakai, Y. Sadaoka, M. Matsuguchi, Humidity sensors based on polymer thin films. Sens. Actuators B 35, 85–90 (1996)CrossRef
24.
Zurück zum Zitat S. Tsuchitani, T. Sugawara, N. Kinjo, S. Ohara, T. Tsunoda, A humidity sensor using ionic copolymer and its application to a humidity-temperature sensor module. Sens. Actuators 15, 375–386 (1988)CrossRef S. Tsuchitani, T. Sugawara, N. Kinjo, S. Ohara, T. Tsunoda, A humidity sensor using ionic copolymer and its application to a humidity-temperature sensor module. Sens. Actuators 15, 375–386 (1988)CrossRef
25.
Zurück zum Zitat C.P.L. Rubinger, C.R. Martins, M.A. De Paoli, R.M. Rubinger, Sulfonated polystyrene polymer humidity sensor: Synthesis and characterization. Sens. Actuators B 123, 42–49 (2007)CrossRef C.P.L. Rubinger, C.R. Martins, M.A. De Paoli, R.M. Rubinger, Sulfonated polystyrene polymer humidity sensor: Synthesis and characterization. Sens. Actuators B 123, 42–49 (2007)CrossRef
26.
Zurück zum Zitat M. Ueda, K. Nakamura, K. Tanaka, H. Kita, K. Okamoto, Water-resistant humidity sensors based on sulfonated polyimides. Sens. Actuators B 127, 463–470 (2007)CrossRef M. Ueda, K. Nakamura, K. Tanaka, H. Kita, K. Okamoto, Water-resistant humidity sensors based on sulfonated polyimides. Sens. Actuators B 127, 463–470 (2007)CrossRef
27.
Zurück zum Zitat M. Naffakh, M.A. Gómez, G. Ellis, C. Marco, Thermal properties, structure and morphology of PEEK/thermotropic liquid crystalline polymer blends. Polym. Int. 52, 1876–1886 (2010)CrossRef M. Naffakh, M.A. Gómez, G. Ellis, C. Marco, Thermal properties, structure and morphology of PEEK/thermotropic liquid crystalline polymer blends. Polym. Int. 52, 1876–1886 (2010)CrossRef
28.
Zurück zum Zitat P. Cebe, S.Y. Chung, S.D. Hong, Effect of thermal history on mechanical properties of polyetheretherketone below the glass transition temperature. J. Appl. Polym. Sci. 33, 487–503 (2010)CrossRef P. Cebe, S.Y. Chung, S.D. Hong, Effect of thermal history on mechanical properties of polyetheretherketone below the glass transition temperature. J. Appl. Polym. Sci. 33, 487–503 (2010)CrossRef
29.
Zurück zum Zitat S. Marqués, A. Holtel, K.N. Timmis, J.L. Ramos, Crystallization phenomena in the injection molding of PEEK and its influence on mechanical properties. Polym. Eng. Sci. 30, 967–980 (2010) S. Marqués, A. Holtel, K.N. Timmis, J.L. Ramos, Crystallization phenomena in the injection molding of PEEK and its influence on mechanical properties. Polym. Eng. Sci. 30, 967–980 (2010)
30.
Zurück zum Zitat P. Sivaraman, R.K. Kushwaha, K. Shashidhara, V.R. Hande, A.P. Thakur, A.B. Samui, M.M. Khandpekar, All solid supercapacitor based on polyaniline and crosslinked sulfonated poly[ether ether ketone]. J. Power Sources 55, 2451–2456 (2010) P. Sivaraman, R.K. Kushwaha, K. Shashidhara, V.R. Hande, A.P. Thakur, A.B. Samui, M.M. Khandpekar, All solid supercapacitor based on polyaniline and crosslinked sulfonated poly[ether ether ketone]. J. Power Sources 55, 2451–2456 (2010)
31.
Zurück zum Zitat Y. Zhang, Y. Wan, G. Zhang, K. Shao, C. Zhao, H. Li, H. Na, Preparation and properties of novel cross-linked sulfonated poly(arylene ether ketone) for direct methanol fuel cell application. J. Membr. Sci. 348, 353–359 (2010)CrossRef Y. Zhang, Y. Wan, G. Zhang, K. Shao, C. Zhao, H. Li, H. Na, Preparation and properties of novel cross-linked sulfonated poly(arylene ether ketone) for direct methanol fuel cell application. J. Membr. Sci. 348, 353–359 (2010)CrossRef
32.
Zurück zum Zitat C. Zhao, Z. Wang, D. Bi, H. Lin, K. Shao, T. Fu, S. Zhong, H. Na, Blend membranes based on disulfonated poly(aryl ether ether ketone)s (SPEEK) and poly(amide imide) (PAI) for direct methanol fuel cell usages. Polymer 48, 3090–3097 (2007)CrossRef C. Zhao, Z. Wang, D. Bi, H. Lin, K. Shao, T. Fu, S. Zhong, H. Na, Blend membranes based on disulfonated poly(aryl ether ether ketone)s (SPEEK) and poly(amide imide) (PAI) for direct methanol fuel cell usages. Polymer 48, 3090–3097 (2007)CrossRef
33.
Zurück zum Zitat J. Wang, C. Zhao, H. Lin, G. Zhang, Y. Zhang, J. Ni, W. Ma, H. Na, Design of a stable and methanol resistant membrane with cross-linked multilayered polyelectrolyte complexes for direct methanol fuel cells. J. Power Sources 196, 5432–5437 (2011)CrossRef J. Wang, C. Zhao, H. Lin, G. Zhang, Y. Zhang, J. Ni, W. Ma, H. Na, Design of a stable and methanol resistant membrane with cross-linked multilayered polyelectrolyte complexes for direct methanol fuel cells. J. Power Sources 196, 5432–5437 (2011)CrossRef
34.
Zurück zum Zitat C. Wang, S.Y. Lee, D.W. Shin, N.R. Kang, Y.M. Lee, M.D. Guiver, Proton-conducting membranes from poly(ether sulfone)s grafted with sulfoalkylamine. J. Membr. Sci. 427, 443–450 (2013)CrossRef C. Wang, S.Y. Lee, D.W. Shin, N.R. Kang, Y.M. Lee, M.D. Guiver, Proton-conducting membranes from poly(ether sulfone)s grafted with sulfoalkylamine. J. Membr. Sci. 427, 443–450 (2013)CrossRef
35.
Zurück zum Zitat K. Shao, J. Zhu, C. Zhao, X.F. Li, Z. Cui, Y. Zhang, H. Li, D. Xu, G. Zhang, T. Fu, J. Wu, H. Na, W. Xing, Naphthalene-based poly(arylene ether ketone) copolymers containing sulfobutyl pendant groups for proton exchange membranes. J. Polym. Sci. A 47, 5772–5783 (2009)CrossRef K. Shao, J. Zhu, C. Zhao, X.F. Li, Z. Cui, Y. Zhang, H. Li, D. Xu, G. Zhang, T. Fu, J. Wu, H. Na, W. Xing, Naphthalene-based poly(arylene ether ketone) copolymers containing sulfobutyl pendant groups for proton exchange membranes. J. Polym. Sci. A 47, 5772–5783 (2009)CrossRef
36.
Zurück zum Zitat T. Na, K. Shao, J. Zhu, Z. Liu, H. Sun, C.M. Lew, Z. Zhang, G. Zhang, Fluorinated naphthalene-based poly(arylene ether ketone)s containing pendant groups for direct methanol fuel cells. Polymer 53, 4413–4419 (2012)CrossRef T. Na, K. Shao, J. Zhu, Z. Liu, H. Sun, C.M. Lew, Z. Zhang, G. Zhang, Fluorinated naphthalene-based poly(arylene ether ketone)s containing pendant groups for direct methanol fuel cells. Polymer 53, 4413–4419 (2012)CrossRef
37.
Zurück zum Zitat M. Fujimura, T.J. Hashimoto, H. Kawai, Small-angle X-ray study of perfluorinated ionomer membrane. Part 1. Origin of two scattering maximum. Macromolecules 14, 1309–1315 (1981)CrossRef M. Fujimura, T.J. Hashimoto, H. Kawai, Small-angle X-ray study of perfluorinated ionomer membrane. Part 1. Origin of two scattering maximum. Macromolecules 14, 1309–1315 (1981)CrossRef
38.
Zurück zum Zitat M. Fujimura, T.J. Hashimoto, H. Kawai, Small-angle X-ray study of perfluorinated ionomer membrane. Part 2. Models for ionic scattering maximum. Macromolecules 15, 136–144 (1981)CrossRef M. Fujimura, T.J. Hashimoto, H. Kawai, Small-angle X-ray study of perfluorinated ionomer membrane. Part 2. Models for ionic scattering maximum. Macromolecules 15, 136–144 (1981)CrossRef
39.
Zurück zum Zitat N. Parvatikar, S. Jain, S. Khasim, M. Revansiddappa, S.V. Bhoraskar, M.V.N Ambika Prasad, Electrical and humidity sensing properties of polyaniline/WO3, composites. Sens. Actuators B 114, 599–603 (2006)CrossRef N. Parvatikar, S. Jain, S. Khasim, M. Revansiddappa, S.V. Bhoraskar, M.V.N Ambika Prasad, Electrical and humidity sensing properties of polyaniline/WO3, composites. Sens. Actuators B 114, 599–603 (2006)CrossRef
40.
Zurück zum Zitat Q. Qi, T. Zhang, S. Wang, X. Zheng, Humidity sensing properties of KCl-doped ZnO nanofibers with super-rapid response and recovery. Sens. Actuators B 139, 649–655 (2009)CrossRef Q. Qi, T. Zhang, S. Wang, X. Zheng, Humidity sensing properties of KCl-doped ZnO nanofibers with super-rapid response and recovery. Sens. Actuators B 139, 649–655 (2009)CrossRef
41.
Zurück zum Zitat S. Ghosh, R. Ghosh, P.K. Guha, T.K. Bhattacharyya, Enhanced proton conductivity of graphene oxide/Nafion composite material in humidity sensing application. IEEE Trans. Nanotechnol. 15, 782–790 (2016)CrossRef S. Ghosh, R. Ghosh, P.K. Guha, T.K. Bhattacharyya, Enhanced proton conductivity of graphene oxide/Nafion composite material in humidity sensing application. IEEE Trans. Nanotechnol. 15, 782–790 (2016)CrossRef
42.
Zurück zum Zitat D. Qi, C. Zhao, Z. Zhuang, H. Na, Novel humidity sensitive materials derived from naphthalene-based poly(arylene ether ketone) containing sulfobutyl pendant groups. Electrochim. Acta 197, 39–49 (2016)CrossRef D. Qi, C. Zhao, Z. Zhuang, H. Na, Novel humidity sensitive materials derived from naphthalene-based poly(arylene ether ketone) containing sulfobutyl pendant groups. Electrochim. Acta 197, 39–49 (2016)CrossRef
43.
Zurück zum Zitat K.C. Sajjan, A.S. Roy, A. Parveen, S. Khasim, Analysis of DC and AC properties of a humidity sensor based on polyaniline–chromium oxide composites. J. Mater. Sci. Mater. Electron. 25, 1237–1243 (2014)CrossRef K.C. Sajjan, A.S. Roy, A. Parveen, S. Khasim, Analysis of DC and AC properties of a humidity sensor based on polyaniline–chromium oxide composites. J. Mater. Sci. Mater. Electron. 25, 1237–1243 (2014)CrossRef
Metadaten
Titel
Poly(ether ether ketone) grafted with sulfoalkylamine for highly sensitive humidity sensor with small hysteresis
verfasst von
Zhi Shao
Zhuang Zhuang
Haidan Lin
Chengji Zhao
Publikationsdatum
27.04.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 13/2018
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-9159-0

Weitere Artikel der Ausgabe 13/2018

Journal of Materials Science: Materials in Electronics 13/2018 Zur Ausgabe

Neuer Inhalt