Skip to main content
main-content

Über dieses Buch

This book focuses on both production and extraction aspects of Polyhydroxyalkanoates (PHAs) for their commercialization purpose. PHAs have broad range of applications in packaging, food, agriculture and pharmaceutical industries. Until now literature reports have discussed either production strategies or extraction protocols. But for commercialization purpose both issues need to be addressed. This book highlights other copolymers of PHAs which have much better physico-mechanical properties such as elasticity and strength than polyhydroxybutyrate (PHB). Finally efficient product recovery protocols and process optimization strategies including renewable substrates, high cell density cultivations, genetic engineering and mathematical modeling are discussed in detail in order to outline the progress made so far in the area of economic biopolymer production. The primary audience will be scholars, researchers and professors working in colleges, universities, research institutes and government organizations.

Inhaltsverzeichnis

Frontmatter

Chapter 1. Introduction and Background

Abstract
The usage of synthetic plastics such as polyethylene and polypropylene was initiated by mankind to enhance the quality and comfort of life without realizing their ubiquitous nature. Now they have become an essential part of contemporary life and are being used increasingly in different industrial applications due to their unique characteristics of strength, durability and resistance to chemicals. The high molecular weight appears to be the main reason for the resistance of these plastics to biodegradation and perseverance in soil for a longer period of time. This non-biodegradable nature of synthetic plastics and dependency on fossil fuels for their production have driven the search for alternative sustainable biotechnological solution with lower environmental impact. In this regard, Polyhydroxyalkanoates (PHAs) are considered as best alternatives as they are produced by fermentation of renewable feedstock and are completely biodegradable. However, despite the considerable research work on PHAs, only limited success has been achieved so far. The main bottleneck in successful utilization of PHAs is their high cost of production. This book chapter presents general introduction on PHAs and their types, and how they came into existence.
Geeta Gahlawat

Chapter 2. Polyhydroxyalkanoates: The Future Bioplastics

Abstract
Polyhydroxyalkanoates or PHAs are interesting biodegradable thermoplastics which are usually produced by bacteria intracellularly as an energy storage material under unfavourable growth condition. PHAs are attractive materials that can be developed as a bio-based commodity plastics. PHAs are also known as biocompatible polymers which can be used in various biomedical applications. This book chapter discusses about the production of PHAs by different types of bacteria using renewable resources.
Geeta Gahlawat

Chapter 3. Challenges in PHAs Production at Mass Scale

Abstract
Polyhydroxyalkanoates (PHAs) biopolymers provide a suitable alternative to the synthetic plastics because of their biodegradability, biocompatibility and environment friendly manufacturing processes. PHAs are promising candidate for bio-based plastics because their material properties are quite similar to petroleum-based plastics and can be produced from renewable resources. However, the high production cost limit their application at industrial level. This book chapter discusses about the challenges faced by the society for the commercialization of biodegradable PHAs.
Geeta Gahlawat

Chapter 4. Production Strategies for Commercialization of PHA

Abstract
The most important criterion for large-scale production of polyhydroxyalkanoate (PHA) is sustainability in terms of supply and cost. The sustainable production of PHAs could be achieved by utilization of renewable, inexpensive carbon substrates and adopting efficient extraction processes. The operational cost of PHAs production process can be significantly minimized by using high yielding strains and various process optimization strategies. This chapter focuses on various strategies used in literature for cost-effective sustainable production of PHA.
Geeta Gahlawat

Chapter 5. Summary and Future Perspectives

Abstract
This chapter mainly focuses on the future perspectives and the recent developments in strategies for sustainable production of PHA.
Geeta Gahlawat
Weitere Informationen

Premium Partner

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen. 

    Bildnachweise