Skip to main content
Erschienen in: Journal of Materials Science 13/2019

22.03.2019 | Composites

Polylactic acid/sodium alginate/hydroxyapatite composite scaffolds with trabecular tissue morphology designed by a bone remodeling model using 3D printing

verfasst von: I. Fernández-Cervantes, M. A. Morales, R. Agustín-Serrano, M. Cardenas-García, P. V. Pérez-Luna, B. L. Arroyo-Reyes, A. Maldonado-García

Erschienen in: Journal of Materials Science | Ausgabe 13/2019

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The article presents a new methodology that employs 3D printing technology to generate a microporous composite material of polylactic acid, sodium alginate and hydroxyapatite, whose microstructure is designed by means of the 3D numerical solution from a mathematical model. This model represents the spatio-temporal dynamics of the interaction between osteoblasts and osteoclasts in the bone remodeling. The microporosity of composite material mimics the structure of human trabecular bone. This material has density with microporosity pretty close to the one that is exhibited by the natural bone tissue. Close relationship between the material processing and its elasticity module is observed. When subjecting this composite material to a simulated body fluid treatment, the mechanical resistance to compression is increased due to induced mineralization of hydroxyapatite crystals on its surface. The methodology shows potential to generate structures that allow the control of the composite material properties. The material presents a microporosity that has morphological and chemical properties suitable for future applications in tissue engineering as bone scaffold.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Jaffe M, Hammond W, Tolias P, Arinzeh T (2013) Characterization of biomaterials, 1st edn. Woodhead Publishing, OxfordCrossRef Jaffe M, Hammond W, Tolias P, Arinzeh T (2013) Characterization of biomaterials, 1st edn. Woodhead Publishing, OxfordCrossRef
2.
Zurück zum Zitat Martin TJ, Ng KW (1994) Mechanisms by which cells of the osteoblast lineage control osteoclast formation and activity. J Cell Biochem 56:357–366CrossRef Martin TJ, Ng KW (1994) Mechanisms by which cells of the osteoblast lineage control osteoclast formation and activity. J Cell Biochem 56:357–366CrossRef
3.
Zurück zum Zitat Rodan GA, Martin TJ (2000) Therapeutic approaches to bone diseases. Science 289:1508–1514CrossRef Rodan GA, Martin TJ (2000) Therapeutic approaches to bone diseases. Science 289:1508–1514CrossRef
4.
Zurück zum Zitat Mouriño V, Boccaccini AR (2010) Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. J R Soc Interface 7:209–227CrossRef Mouriño V, Boccaccini AR (2010) Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. J R Soc Interface 7:209–227CrossRef
5.
Zurück zum Zitat Seitz H, Rieder W, Irsen S, Leukers B, Tille C (2005) Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater 74:782–788CrossRef Seitz H, Rieder W, Irsen S, Leukers B, Tille C (2005) Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater 74:782–788CrossRef
6.
Zurück zum Zitat Jones AC, Arns CH, Sheppard AP, Hutmacher DW, Milthorpe BK, Knackstedt MA (2007) Assessment of bone ingrowth into porous biomaterials using MICRO-CT. Biomaterials 28:2491–504CrossRef Jones AC, Arns CH, Sheppard AP, Hutmacher DW, Milthorpe BK, Knackstedt MA (2007) Assessment of bone ingrowth into porous biomaterials using MICRO-CT. Biomaterials 28:2491–504CrossRef
7.
Zurück zum Zitat Rezwan F, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431CrossRef Rezwan F, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431CrossRef
8.
Zurück zum Zitat Muller B, Deyhle H, Fierz F (2009) Bio-mimetic hollow scaffolds for long bone replacement. Proc SPIE 7401:1–13 Muller B, Deyhle H, Fierz F (2009) Bio-mimetic hollow scaffolds for long bone replacement. Proc SPIE 7401:1–13
10.
Zurück zum Zitat Liu Y, Lim J, Teoh SH (2013) Review: development of clinically relevant scaffolds for vascularised bone tissue engineering. Biotechnol Adv 31:688–705CrossRef Liu Y, Lim J, Teoh SH (2013) Review: development of clinically relevant scaffolds for vascularised bone tissue engineering. Biotechnol Adv 31:688–705CrossRef
11.
Zurück zum Zitat Hao Z, Song Z, Huang J, Huang K, Panetta A, Gu Z, Wu J (2017) The scaffold microenvironment for stem cell based bone tissue engineering. Biomater Sci 5:1382–1392CrossRef Hao Z, Song Z, Huang J, Huang K, Panetta A, Gu Z, Wu J (2017) The scaffold microenvironment for stem cell based bone tissue engineering. Biomater Sci 5:1382–1392CrossRef
12.
Zurück zum Zitat Salgado AJ, Coutinho OP, Reis RL (2004) Bone tissue engineering: state of the art and future trends. Macromol Biosci 4:743–765CrossRef Salgado AJ, Coutinho OP, Reis RL (2004) Bone tissue engineering: state of the art and future trends. Macromol Biosci 4:743–765CrossRef
13.
Zurück zum Zitat Velasco MA, Lancheros Y, Garzón-Alvarado DA (2016) Geometric and mechanical properties evaluation of scaffolds for bone tissue applications designing by a reaction–diffusion models and manufactured with a material jetting system. J Comput Des Eng 3:385–397 Velasco MA, Lancheros Y, Garzón-Alvarado DA (2016) Geometric and mechanical properties evaluation of scaffolds for bone tissue applications designing by a reaction–diffusion models and manufactured with a material jetting system. J Comput Des Eng 3:385–397
14.
Zurück zum Zitat Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491CrossRef Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491CrossRef
15.
Zurück zum Zitat Xue W, Krishna BV, Bandyopadhyay A, Bose S (2007) Processing and biocompatibility evaluation of laser processed porous titanium. Acta Biomater 3:1007–1018CrossRef Xue W, Krishna BV, Bandyopadhyay A, Bose S (2007) Processing and biocompatibility evaluation of laser processed porous titanium. Acta Biomater 3:1007–1018CrossRef
16.
Zurück zum Zitat Otsuki B, Takemoto M, Fujibayashi S, Neo M, Kokubo T, Nakamura T (2006) Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: three-dimensional micro-CT based structural analyses of porous bioactive titanium implants. Biomaterials 27:5892–5900CrossRef Otsuki B, Takemoto M, Fujibayashi S, Neo M, Kokubo T, Nakamura T (2006) Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: three-dimensional micro-CT based structural analyses of porous bioactive titanium implants. Biomaterials 27:5892–5900CrossRef
17.
Zurück zum Zitat Stoppato M, Carletti E, Sidarovich V, Quattrone A, Unger RE, Kirkpatrick CJ, Migliaresi C, Motta A (2013) Influence of scaffold pore size on collagen I development: a new in vitro evaluation perspective. J Bioact Compat Polym 28:16–32CrossRef Stoppato M, Carletti E, Sidarovich V, Quattrone A, Unger RE, Kirkpatrick CJ, Migliaresi C, Motta A (2013) Influence of scaffold pore size on collagen I development: a new in vitro evaluation perspective. J Bioact Compat Polym 28:16–32CrossRef
18.
Zurück zum Zitat Das K, Bose S, Bandyopadhyay A (2007) Surface modifications and cell-materials interactions with anodized Ti. Acta Biomater 3:573–585CrossRef Das K, Bose S, Bandyopadhyay A (2007) Surface modifications and cell-materials interactions with anodized Ti. Acta Biomater 3:573–585CrossRef
19.
Zurück zum Zitat Bodhak S, Bose S, Bandyopadhyay A (2009) Role of surface charge and wettability on early stage mineralization and bone cell-materials interactions of polarized hydroxyapatite. Acta Biomater 5:2178–2188CrossRef Bodhak S, Bose S, Bandyopadhyay A (2009) Role of surface charge and wettability on early stage mineralization and bone cell-materials interactions of polarized hydroxyapatite. Acta Biomater 5:2178–2188CrossRef
20.
Zurück zum Zitat Tarafder S, Banerjee S, Bandyopadhyay A, Bose S (2010) Electrically polarized biphasic calcium phosphates: adsorption and release of bovine serum albumin. Langmuir 26:16625–16629CrossRef Tarafder S, Banerjee S, Bandyopadhyay A, Bose S (2010) Electrically polarized biphasic calcium phosphates: adsorption and release of bovine serum albumin. Langmuir 26:16625–16629CrossRef
21.
Zurück zum Zitat Kucharska M, Butruk B, Walenko K, Brynk T, Ciach T (2012) Fabrication of in-situ foamed chitosan/ \({\beta }\)-TCP scaffolds for bone tissue engineering application. Mater Lett 85:124–127CrossRef Kucharska M, Butruk B, Walenko K, Brynk T, Ciach T (2012) Fabrication of in-situ foamed chitosan/ \({\beta }\)-TCP scaffolds for bone tissue engineering application. Mater Lett 85:124–127CrossRef
22.
Zurück zum Zitat Cao H, Kuboyama N (2010) A biodegradable porous composite scaffold of PGA/beta-TCP for bone tissue engineering. Bone 46:386–395CrossRef Cao H, Kuboyama N (2010) A biodegradable porous composite scaffold of PGA/beta-TCP for bone tissue engineering. Bone 46:386–395CrossRef
23.
Zurück zum Zitat Sultana N, Wang M (2008) Fabrication of HA/PHBV composite scaffolds through the emulsion freezing/freeze-drying process and characterisation of the scaffolds. J Mater Sci Mater Med 19:2555–2561CrossRef Sultana N, Wang M (2008) Fabrication of HA/PHBV composite scaffolds through the emulsion freezing/freeze-drying process and characterisation of the scaffolds. J Mater Sci Mater Med 19:2555–2561CrossRef
24.
Zurück zum Zitat Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543CrossRef Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543CrossRef
25.
Zurück zum Zitat Yoshikawa H, Tamai N, Murase T, Myoui A (2009) Interconnected porous hydroxyapatite ceramics for bone tissue engineering. J R Soc Interface 6:S341–S348CrossRef Yoshikawa H, Tamai N, Murase T, Myoui A (2009) Interconnected porous hydroxyapatite ceramics for bone tissue engineering. J R Soc Interface 6:S341–S348CrossRef
26.
Zurück zum Zitat Bose S, Suguira S, Bandyopadhyay A (1999) Processing of controlled porosity ceramic structures via fused deposition. Scr Mater 41:1009–1014CrossRef Bose S, Suguira S, Bandyopadhyay A (1999) Processing of controlled porosity ceramic structures via fused deposition. Scr Mater 41:1009–1014CrossRef
27.
Zurück zum Zitat Bose S, Darsell J, Kintner M, Hosick H, Bandyopadhyay A (2003) Pore size and pore volume effects on alumina and TCP ceramic scaffolds. Mater Sci Eng C 23:479–486CrossRef Bose S, Darsell J, Kintner M, Hosick H, Bandyopadhyay A (2003) Pore size and pore volume effects on alumina and TCP ceramic scaffolds. Mater Sci Eng C 23:479–486CrossRef
28.
Zurück zum Zitat Gibson I, Rosen D, Stucker B (2015) Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing, 2nd edn. Springer, New YorkCrossRef Gibson I, Rosen D, Stucker B (2015) Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing, 2nd edn. Springer, New YorkCrossRef
29.
Zurück zum Zitat Gantenbein S, Masania K, Woigk W, Sesseg JPW, Tervoort TA, Studart AR (2018) Three-dimensional printing of hierarchical liquid-crystal-polymer structures. Nature 561:226–230CrossRef Gantenbein S, Masania K, Woigk W, Sesseg JPW, Tervoort TA, Studart AR (2018) Three-dimensional printing of hierarchical liquid-crystal-polymer structures. Nature 561:226–230CrossRef
30.
Zurück zum Zitat Inzana JA, Olvera D, Fuller SM, Kelly JP, Graeve OA, Schwarz EM, Kates SL, Awad HA (2014) 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials 35:4026–4034CrossRef Inzana JA, Olvera D, Fuller SM, Kelly JP, Graeve OA, Schwarz EM, Kates SL, Awad HA (2014) 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials 35:4026–4034CrossRef
31.
Zurück zum Zitat Komarova SV, Smith RJ, Dixon SJ, Sims SM, Wahl LM (2003) Mathematical model predicts a critical role for osteoclast autocrine regulation in the control of bone remodeling. Bone 33:206–215CrossRef Komarova SV, Smith RJ, Dixon SJ, Sims SM, Wahl LM (2003) Mathematical model predicts a critical role for osteoclast autocrine regulation in the control of bone remodeling. Bone 33:206–215CrossRef
32.
Zurück zum Zitat Ayati BP, Edwards CM, Webb GF, Wikswo JP (2010) A mathematical model of bone remodeling dynamics for normal bone cell populations and myeloma bone disease. Biol Direct 5:1–17CrossRef Ayati BP, Edwards CM, Webb GF, Wikswo JP (2010) A mathematical model of bone remodeling dynamics for normal bone cell populations and myeloma bone disease. Biol Direct 5:1–17CrossRef
33.
Zurück zum Zitat Felfel RM, Poocza L, Gimeno-Fabra M, Milde T, Hildebrand G, Ahmed I, Scotchford C, Sottile V, Grant DM, Liefeith K (2016) In vitro degradation and mechanical properties of PLA-PCL copolymer unit cell scaffolds generated by two-photon polymerization. Biomed Mater 11:1–14CrossRef Felfel RM, Poocza L, Gimeno-Fabra M, Milde T, Hildebrand G, Ahmed I, Scotchford C, Sottile V, Grant DM, Liefeith K (2016) In vitro degradation and mechanical properties of PLA-PCL copolymer unit cell scaffolds generated by two-photon polymerization. Biomed Mater 11:1–14CrossRef
34.
Zurück zum Zitat Zhu Y, Wan Y, Zhang J, Yin D, Cheng W (2014) Manufacture of layered collagen/chitosan-polycaprolactone scaffolds with biomimetic microarchitecture. Colloids Surf B Biointerfaces 113:352–356CrossRef Zhu Y, Wan Y, Zhang J, Yin D, Cheng W (2014) Manufacture of layered collagen/chitosan-polycaprolactone scaffolds with biomimetic microarchitecture. Colloids Surf B Biointerfaces 113:352–356CrossRef
35.
Zurück zum Zitat Jang IG, Kim IY (2008) Computational study of Wolffs law with trabecular architecture in the human proximal femur using topology optimization. J Biomech 41:2353–2361CrossRef Jang IG, Kim IY (2008) Computational study of Wolffs law with trabecular architecture in the human proximal femur using topology optimization. J Biomech 41:2353–2361CrossRef
36.
Zurück zum Zitat Tsubota K, Suzuki Y, Yamada T, Hojo M, Makinouchi A, Adachi T (2009) Computer simulation of trabecular remodeling in human proximal femur using large-scale voxel FE models: approach to understanding Wolffs law. J Biomech 42:1088–1094CrossRef Tsubota K, Suzuki Y, Yamada T, Hojo M, Makinouchi A, Adachi T (2009) Computer simulation of trabecular remodeling in human proximal femur using large-scale voxel FE models: approach to understanding Wolffs law. J Biomech 42:1088–1094CrossRef
37.
Zurück zum Zitat Boyle C, Kim IY (2011) Three-dimensional micro-level computational study of Wolffs law via trabecular bone remodeling in the human proximal femur using design space topology optimization. J Biomech 44:935–942CrossRef Boyle C, Kim IY (2011) Three-dimensional micro-level computational study of Wolffs law via trabecular bone remodeling in the human proximal femur using design space topology optimization. J Biomech 44:935–942CrossRef
38.
Zurück zum Zitat Saber-Samandari S, Saber-Samandari S, Kiyazar S, Aghazadeh J, Sadeghi A (2016) In vitro evaluation for apatite-forming ability of cellulose-based nanocomposite scaffolds for bone tissue engineering. Int J Biol Macromol 86:434–442CrossRef Saber-Samandari S, Saber-Samandari S, Kiyazar S, Aghazadeh J, Sadeghi A (2016) In vitro evaluation for apatite-forming ability of cellulose-based nanocomposite scaffolds for bone tissue engineering. Int J Biol Macromol 86:434–442CrossRef
39.
Zurück zum Zitat Vinceković M, Jalśenjak N, Topolovec-Pintarić S, Dermić E, Bujan M, Jurić S (2016) Encapsulation of biological and chemical agents for plant nutrition and protection: chitosan/alginate microcapsules loaded with copper cations and trichoderma viride. J Agric Food Chem 64:8073–8083CrossRef Vinceković M, Jalśenjak N, Topolovec-Pintarić S, Dermić E, Bujan M, Jurić S (2016) Encapsulation of biological and chemical agents for plant nutrition and protection: chitosan/alginate microcapsules loaded with copper cations and trichoderma viride. J Agric Food Chem 64:8073–8083CrossRef
40.
Zurück zum Zitat Koutsopoulos S (2002) Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. J Biomed Mater Res 62:600–612CrossRef Koutsopoulos S (2002) Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. J Biomed Mater Res 62:600–612CrossRef
41.
Zurück zum Zitat Bett JAS, Christner LG, Hall WK (1967) Hydrogen held by solids. XII. Hydroxyapatite catalysts. J Am Chem Soc 89:5535–5541CrossRef Bett JAS, Christner LG, Hall WK (1967) Hydrogen held by solids. XII. Hydroxyapatite catalysts. J Am Chem Soc 89:5535–5541CrossRef
42.
Zurück zum Zitat Sibeko B, Choonara YE, du Toit LC, Modi G, Naidoo D, Khan RA, Kumar P, Ndesendo VMK, Iyuke SE, Pillay V (2012) Composite polylactic-methacrylic acid copolymer nanoparticles for the delivery of methotrexate. J Drug Deliv 2012:1–18CrossRef Sibeko B, Choonara YE, du Toit LC, Modi G, Naidoo D, Khan RA, Kumar P, Ndesendo VMK, Iyuke SE, Pillay V (2012) Composite polylactic-methacrylic acid copolymer nanoparticles for the delivery of methotrexate. J Drug Deliv 2012:1–18CrossRef
43.
Zurück zum Zitat Kanasan N, Adzila S, Suid MS, Gurubaran P (2016) Preparation and characterization of hydroxyapatite/sodium alginate biocomposites for bone implant application. In: AIP conference proceedings 1756:020006-1 to 020006-1 Kanasan N, Adzila S, Suid MS, Gurubaran P (2016) Preparation and characterization of hydroxyapatite/sodium alginate biocomposites for bone implant application. In: AIP conference proceedings 1756:020006-1 to 020006-1
44.
Zurück zum Zitat Antebi B, Cheng X, Harris JN, Gower LB, Chen X-D, Ling J (2013) Biomimetic collagen hydroxyapatite composite fabricated via a novel perfusion-flow mineralization technique. Tissue Eng Part C Methods 19:487–496CrossRef Antebi B, Cheng X, Harris JN, Gower LB, Chen X-D, Ling J (2013) Biomimetic collagen hydroxyapatite composite fabricated via a novel perfusion-flow mineralization technique. Tissue Eng Part C Methods 19:487–496CrossRef
45.
Zurück zum Zitat Fonseca J (2012) Bone biology: from macrostructure to gene expression. Medicographia 34:142–148 Fonseca J (2012) Bone biology: from macrostructure to gene expression. Medicographia 34:142–148
46.
Zurück zum Zitat Norman J, Shapter JG, Short K, Smith LJ, Fazzalari NL (2008) Micromechanical properties of human trabecular bone: a hierarchical investigation using nanoindentation. J Biomed Mater Res A 87A:196–202CrossRef Norman J, Shapter JG, Short K, Smith LJ, Fazzalari NL (2008) Micromechanical properties of human trabecular bone: a hierarchical investigation using nanoindentation. J Biomed Mater Res A 87A:196–202CrossRef
47.
Zurück zum Zitat Hing KA (2004) Bone repair in the twenty-first century: biology, chemistry or engineering? Philos. Trans A Math Phys Eng Sci 362:2821–2850CrossRef Hing KA (2004) Bone repair in the twenty-first century: biology, chemistry or engineering? Philos. Trans A Math Phys Eng Sci 362:2821–2850CrossRef
48.
Zurück zum Zitat Wagoner-Johnson AJ, Herschler BA (2011) A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomater 7:16–30CrossRef Wagoner-Johnson AJ, Herschler BA (2011) A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomater 7:16–30CrossRef
49.
Zurück zum Zitat Brundavanam RK, Poinern GEJ, Fawcett D (2013) Modelling the crystal structure of a 30 nm sized particle based hydroxyapatite powder synthesised under the influence of ultrasound irradiation from X-ray powder diffraction data. Am J Mater Sci 3:84–90 Brundavanam RK, Poinern GEJ, Fawcett D (2013) Modelling the crystal structure of a 30 nm sized particle based hydroxyapatite powder synthesised under the influence of ultrasound irradiation from X-ray powder diffraction data. Am J Mater Sci 3:84–90
50.
Zurück zum Zitat Maciel A, Presbtero G, Pia C, del Pilar Gutiérrez M, Guzmán J, Munguía N (2015) Pore cross-section area on predicting elastic properties of trabecular bovine bone for human implants. Biomed Mater Eng 25:9–23 Maciel A, Presbtero G, Pia C, del Pilar Gutiérrez M, Guzmán J, Munguía N (2015) Pore cross-section area on predicting elastic properties of trabecular bovine bone for human implants. Biomed Mater Eng 25:9–23
Metadaten
Titel
Polylactic acid/sodium alginate/hydroxyapatite composite scaffolds with trabecular tissue morphology designed by a bone remodeling model using 3D printing
verfasst von
I. Fernández-Cervantes
M. A. Morales
R. Agustín-Serrano
M. Cardenas-García
P. V. Pérez-Luna
B. L. Arroyo-Reyes
A. Maldonado-García
Publikationsdatum
22.03.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 13/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03537-1

Weitere Artikel der Ausgabe 13/2019

Journal of Materials Science 13/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.