Skip to main content
Erschienen in: Rare Metals 6/2018

14.05.2018

Polymer electrolyte with composite cathode for solid-state Li–CO2 battery

verfasst von: Muhammad Mushtaq, Xian-Wei Guo, Jie-Peng Bi, Zhao-Xiang Wang, Hai-Jun Yu

Erschienen in: Rare Metals | Ausgabe 6/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The rechargeable Li–CO2 battery has attracted much attention for energy storage because of the high energy density and efficient utilization of greenhouse gas. However, it’s still suffered by low safety issue of liquid electrolyte. Herein, a composite cathode consisting of CNTs and polymer electrolytes was fabricated by the in-situ polymerization process for the polymer electrolyte-based solid-state Li–CO2 batteries. With the good dispersion of CNTs and polymer electrolyte, the composite cathode is covered by film-like discharge products Li2CO3. Furthermore, the Li–CO2 battery shows high reversible capacity (~ 11,000 mAh·g−1), excellent cycle stability (1000 mAh·g−1 for 100 cycles) under low charge potential (< 4.5 V), and outstanding rate performances at room temperature, which are much better than those of liquid electrolyte-based battery. Therefore, the polymer electrolyte-based Li–CO2 battery prepared by this strategy can be a promising candidate to meet the demands of high safety and high-performance energy storage devices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM. Li–O2 and Li–S batteries with high energy storage. Nat Mater. 2012;11(1):19.CrossRef Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM. Li–O2 and Li–S batteries with high energy storage. Nat Mater. 2012;11(1):19.CrossRef
[2]
Zurück zum Zitat Yu HJ, Kim HJ, Wang YR, He P, Asakura D, Nakamura Y, Zhou HS. High-energy ‘composite’ layered manganese-rich cathode materials via controlling Li2MnO3 phase activation for lithium-ion batteries. Phys Chem Chem Phys. 2012;14(18):6584.CrossRef Yu HJ, Kim HJ, Wang YR, He P, Asakura D, Nakamura Y, Zhou HS. High-energy ‘composite’ layered manganese-rich cathode materials via controlling Li2MnO3 phase activation for lithium-ion batteries. Phys Chem Chem Phys. 2012;14(18):6584.CrossRef
[3]
Zurück zum Zitat Lu J, Li L, Park JB, Sun YK, Wu F, Amine K. Aprotic and aqueous Li–O2 batteries. Chem Rev. 2014;114(11):5611.CrossRef Lu J, Li L, Park JB, Sun YK, Wu F, Amine K. Aprotic and aqueous Li–O2 batteries. Chem Rev. 2014;114(11):5611.CrossRef
[4]
Zurück zum Zitat Yu HJ, Ren Y, Xiao DD, Guo SH, Zhu YB, Qian YM, Gu L, Zhou HS. An ultrahigh-stable anode for long-life room-temperature Na–ion batteries. Angew Chem Int Ed. 2014;53(34):8963.CrossRef Yu HJ, Ren Y, Xiao DD, Guo SH, Zhu YB, Qian YM, Gu L, Zhou HS. An ultrahigh-stable anode for long-life room-temperature Na–ion batteries. Angew Chem Int Ed. 2014;53(34):8963.CrossRef
[5]
Zurück zum Zitat Li YG, Dai HJ. Recent advances in zinc-air batteries. Chem Soc Rev. 2014;43(15):5257.CrossRef Li YG, Dai HJ. Recent advances in zinc-air batteries. Chem Soc Rev. 2014;43(15):5257.CrossRef
[6]
Zurück zum Zitat Xie ZJ, Zhang X, Zhang Z, Zhou Z. Metal-CO2 batteries on the road: CO2 from contamination gas to energy source. Adv Mater. 2017;29(15):1605891.CrossRef Xie ZJ, Zhang X, Zhang Z, Zhou Z. Metal-CO2 batteries on the road: CO2 from contamination gas to energy source. Adv Mater. 2017;29(15):1605891.CrossRef
[7]
Zurück zum Zitat Guo XW, Liu P, Han JH, Ito Y, Hirata A, Fujita T, Chen MW. 3D nanoporous nitrogen-doped graphene with encapsulated RuO2 nanoparticles for Li–O2 battery. Adv Mater. 2015;27(40):6137.CrossRef Guo XW, Liu P, Han JH, Ito Y, Hirata A, Fujita T, Chen MW. 3D nanoporous nitrogen-doped graphene with encapsulated RuO2 nanoparticles for Li–O2 battery. Adv Mater. 2015;27(40):6137.CrossRef
[8]
Zurück zum Zitat Hu XF, Li ZF, Zhao YR, Sun JC, Zhao Q, Wang JB, Tao ZL, Chen J. Quasi-solid state rechargeable Na–CO2 batteries with reduced graphene oxide Na anodes. Sci Adv. 2017;3(2):e1602396.CrossRef Hu XF, Li ZF, Zhao YR, Sun JC, Zhao Q, Wang JB, Tao ZL, Chen J. Quasi-solid state rechargeable Na–CO2 batteries with reduced graphene oxide Na anodes. Sci Adv. 2017;3(2):e1602396.CrossRef
[9]
Zurück zum Zitat Zeng LC, Li WH, Jiang Y, Yu Y. Recent progress in Li–S and Li–Se batteries. Rare Met. 2017;36(5):339.CrossRef Zeng LC, Li WH, Jiang Y, Yu Y. Recent progress in Li–S and Li–Se batteries. Rare Met. 2017;36(5):339.CrossRef
[10]
Zurück zum Zitat Lim HK, Lim HD, Par KY, Seo DH, Gwon H, Hong J, Goddard WA, Kim HJ, Kang K. Toward a lithium-air battery: the effect of CO2 on the chemistry of a lithium-oxygen cell. J Am Chem Soc. 2013;135(26):9733.CrossRef Lim HK, Lim HD, Par KY, Seo DH, Gwon H, Hong J, Goddard WA, Kim HJ, Kang K. Toward a lithium-air battery: the effect of CO2 on the chemistry of a lithium-oxygen cell. J Am Chem Soc. 2013;135(26):9733.CrossRef
[11]
Zurück zum Zitat Xu SM, Das SK, Archer LA. Li–CO2 battery: a novel method for CO2 capture and utilization. RSC Adv. 2013;3(18):6656.CrossRef Xu SM, Das SK, Archer LA. Li–CO2 battery: a novel method for CO2 capture and utilization. RSC Adv. 2013;3(18):6656.CrossRef
[12]
Zurück zum Zitat Wang XG, Wang CY, Xie ZJ, Zhang X, Chen YN, Wu DH, Zhou Z. Improving electrochemical performances of rechargeable Li–CO2 batteries with an electrolyte redox mediator. ChemElectroChem. 2017;4(9):2145.CrossRef Wang XG, Wang CY, Xie ZJ, Zhang X, Chen YN, Wu DH, Zhou Z. Improving electrochemical performances of rechargeable Li–CO2 batteries with an electrolyte redox mediator. ChemElectroChem. 2017;4(9):2145.CrossRef
[13]
Zurück zum Zitat Yang SX, Qiao Y, He P, Liu YJ, Cheng Z, Zhu JJ, Zhou HS. A reversible Li–CO2 battery with Ru nanoparticles as a cathode catalyst. Energy Environ Sci. 2017;10(4):972.CrossRef Yang SX, Qiao Y, He P, Liu YJ, Cheng Z, Zhu JJ, Zhou HS. A reversible Li–CO2 battery with Ru nanoparticles as a cathode catalyst. Energy Environ Sci. 2017;10(4):972.CrossRef
[14]
Zurück zum Zitat Zhang Z, Zhang Q, Chen YN, Bao J, Zhou XL, Xie ZJ, Wei JP, Zhou Z. The first introduction of graphene to rechargeable Li–CO2 batteries. Angew Chem Int Ed. 2015;54(22):6650.CrossRef Zhang Z, Zhang Q, Chen YN, Bao J, Zhou XL, Xie ZJ, Wei JP, Zhou Z. The first introduction of graphene to rechargeable Li–CO2 batteries. Angew Chem Int Ed. 2015;54(22):6650.CrossRef
[15]
Zurück zum Zitat Zhang X, Zhang Q, Zhang Z, Chen YN, Xie ZJ, Wei JP, Zhou Z. Rechargeable Li–CO2 batteries with carbon nanotubes as air cathodes. Chem Commun. 2015;51(78):14636.CrossRef Zhang X, Zhang Q, Zhang Z, Chen YN, Xie ZJ, Wei JP, Zhou Z. Rechargeable Li–CO2 batteries with carbon nanotubes as air cathodes. Chem Commun. 2015;51(78):14636.CrossRef
[16]
Zurück zum Zitat Hou YY, Wang JZ, Liu LL, Liu YQ, Chou SL, Shi DQ, Liu HK, Wu YP, Zhang WM, Chen J. Mo2C/CNT-an efficient catalyst for rechargeable Li–CO2 batteries. Adv Funct Mater. 2017;27(27):1700564.CrossRef Hou YY, Wang JZ, Liu LL, Liu YQ, Chou SL, Shi DQ, Liu HK, Wu YP, Zhang WM, Chen J. Mo2C/CNT-an efficient catalyst for rechargeable Li–CO2 batteries. Adv Funct Mater. 2017;27(27):1700564.CrossRef
[18]
Zurück zum Zitat Wang LJ, Dai WR, Ma LP, Gong LL, Lyu ZY, Zhou Y, Liu J, Lin M, Lai M, Peng ZQ, Chen W. Mono dispersed Ru nanoparticles functionalized graphene nanosheets as efficient cathode catalysts for O2 assisted Li–CO2 battery. ACS Omega. 2017;29(12):9280.CrossRef Wang LJ, Dai WR, Ma LP, Gong LL, Lyu ZY, Zhou Y, Liu J, Lin M, Lai M, Peng ZQ, Chen W. Mono dispersed Ru nanoparticles functionalized graphene nanosheets as efficient cathode catalysts for O2 assisted Li–CO2 battery. ACS Omega. 2017;29(12):9280.CrossRef
[19]
Zurück zum Zitat Zhang Z, Wang XG, Zhang X, Xie ZJ, Chen YN, Ma LP, Peng ZQ, Zhou Z. Verifying the rechargeability of Li–CO2 batteries on working cathodes of Ni nanoparticles highly dispersed on N-doped graphene. Adv Sci. 2017;5(2):1700567.CrossRef Zhang Z, Wang XG, Zhang X, Xie ZJ, Chen YN, Ma LP, Peng ZQ, Zhou Z. Verifying the rechargeability of Li–CO2 batteries on working cathodes of Ni nanoparticles highly dispersed on N-doped graphene. Adv Sci. 2017;5(2):1700567.CrossRef
[20]
Zurück zum Zitat Qie L, Lin Y, Connell JW, Xu JT, Dai LM. Highly rechargeable lithium-CO2 batteries with a boron and nitrogen-co doped holey-graphene cathode. Angew Chem Int Ed. 2017;56(24):6970.CrossRef Qie L, Lin Y, Connell JW, Xu JT, Dai LM. Highly rechargeable lithium-CO2 batteries with a boron and nitrogen-co doped holey-graphene cathode. Angew Chem Int Ed. 2017;56(24):6970.CrossRef
[21]
Zurück zum Zitat Yi J, Liu XZ, Guo SH, Zhu K, Xue HL, Zhou HS. Novel stable gel polymer electrolyte: toward a high safety and long life Li-air battery, ACS Appl. Mater Interfaces. 2015;7(42):23798.CrossRef Yi J, Liu XZ, Guo SH, Zhu K, Xue HL, Zhou HS. Novel stable gel polymer electrolyte: toward a high safety and long life Li-air battery, ACS Appl. Mater Interfaces. 2015;7(42):23798.CrossRef
[22]
Zurück zum Zitat Kim YB, Kim IT, Song MJ, Shin MW. Poly-vinylidene-fluoride/p-benzoquinone gel polymer electrolyte with good performance by redox mediator effect for Li-air battery. Electrochim Acta. 2016;210:821.CrossRef Kim YB, Kim IT, Song MJ, Shin MW. Poly-vinylidene-fluoride/p-benzoquinone gel polymer electrolyte with good performance by redox mediator effect for Li-air battery. Electrochim Acta. 2016;210:821.CrossRef
[23]
Zurück zum Zitat Yi J, Gu SH, He P, Zhou HS. Status and prospects of polymer electrolytes for solid-state Li–O2 (air) batteries. Energy Environ Sci. 2017;10(4):860.CrossRef Yi J, Gu SH, He P, Zhou HS. Status and prospects of polymer electrolytes for solid-state Li–O2 (air) batteries. Energy Environ Sci. 2017;10(4):860.CrossRef
[24]
Zurück zum Zitat Liu YL, Wang R, Lyu YC, Chen L. Rechargeable Li/CO2–O2 (2: 1) battery and Li/CO2 battery. Energy Environ Sci. 2014;7(2):677.CrossRef Liu YL, Wang R, Lyu YC, Chen L. Rechargeable Li/CO2–O2 (2: 1) battery and Li/CO2 battery. Energy Environ Sci. 2014;7(2):677.CrossRef
[26]
Zurück zum Zitat Qiao Y, Yi J, Wu SC, Liu Y, Yang SX, He P, Zhou HS. Li–CO2 electrochemistry: a new strategy for CO2 fixation and energy storage. Joule. 2017;1(2):359.CrossRef Qiao Y, Yi J, Wu SC, Liu Y, Yang SX, He P, Zhou HS. Li–CO2 electrochemistry: a new strategy for CO2 fixation and energy storage. Joule. 2017;1(2):359.CrossRef
[27]
Zurück zum Zitat Yin W, Grimaud A, Lepoivre F, Yang CZ, Tarascon JM. Chemical vs. electrochemical formation of Li2CO3 as a discharge product in Li–O2/CO2 batteries by controlling the superoxide intermediate. J Phys Chem Lett. 2017;8(1):214.CrossRef Yin W, Grimaud A, Lepoivre F, Yang CZ, Tarascon JM. Chemical vs. electrochemical formation of Li2CO3 as a discharge product in Li–O2/CO2 batteries by controlling the superoxide intermediate. J Phys Chem Lett. 2017;8(1):214.CrossRef
[28]
Zurück zum Zitat Hu XF, Li ZF, Chen J. Flexible Li–CO2 batteries with liquid-free electrolyte. Angew Chem Int Ed. 2017;56(21):5785.CrossRef Hu XF, Li ZF, Chen J. Flexible Li–CO2 batteries with liquid-free electrolyte. Angew Chem Int Ed. 2017;56(21):5785.CrossRef
[29]
Zurück zum Zitat Li C, Guo ZY, Yang BC, Liu Y, Wang YG, Xia YY. A rechargeable Li–CO2 battery with a gel polymer electrolyte. Angew Chem Int Ed. 2017;56(31):9126.CrossRef Li C, Guo ZY, Yang BC, Liu Y, Wang YG, Xia YY. A rechargeable Li–CO2 battery with a gel polymer electrolyte. Angew Chem Int Ed. 2017;56(31):9126.CrossRef
[30]
Zurück zum Zitat Lin ZY, Guo XW, Yu HJ. Amorphous modified silyl-terminated 3D polymer electrolyte for high performance lithium metal battery. Nano Energy. 2017;41(11):646.CrossRef Lin ZY, Guo XW, Yu HJ. Amorphous modified silyl-terminated 3D polymer electrolyte for high performance lithium metal battery. Nano Energy. 2017;41(11):646.CrossRef
Metadaten
Titel
Polymer electrolyte with composite cathode for solid-state Li–CO2 battery
verfasst von
Muhammad Mushtaq
Xian-Wei Guo
Jie-Peng Bi
Zhao-Xiang Wang
Hai-Jun Yu
Publikationsdatum
14.05.2018
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 6/2018
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-018-1044-8

Weitere Artikel der Ausgabe 6/2018

Rare Metals 6/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.