Skip to main content
Erschienen in:
Buchtitelbild

2016 | OriginalPaper | Buchkapitel

1. Polymer Gels as EAPs: Fundamentals

verfasst von : Andreas Voigt, Andreas Richter

Erschienen in: Electromechanically Active Polymers

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Smart hydrogels are soft polymer particles that swell and deswell by taking up water according to external stimuli. After a general introduction, we extensively discuss the thermodynamics that governs the swelling equilibrium of neutral and polyelectrolyte gels. The kinetics of gel swelling is then presented in two models: The Tanaka-Fillmore model that is based on pure mechanics and the more advanced model by Doi which includes thermodynamic processes as the reason for swelling and deswelling. In the following section, the possible sensitivities with which smart hydrogels have been equipped are discussed. Finally we outline the current challenges of fabricating hydrogels with improved mechanical properties.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Some authors use the Gibbs free energy \( G \) which results in a completely equivalent description, since both external pressure and total volume of the system are considered constant.
 
2
These values are calculated from the values given in Hirotsu’s paper, who states them in a different shape based on the chemical potential.
 
Literatur
Zurück zum Zitat Arndt MC, Sadowski G (2014) Thermodynamic model for polyelectrolyte hydrogels. J Phys Chem B 118:10534–10542. doi:10.1021/jp501798xCrossRef Arndt MC, Sadowski G (2014) Thermodynamic model for polyelectrolyte hydrogels. J Phys Chem B 118:10534–10542. doi:10.1021/jp501798xCrossRef
Zurück zum Zitat Arndt K-F, Richter A, Ludwig S et al (1999) Poly(vinyl alcohol)/poly(acrylic acid) hydrogels: FT-IR spectroscopic characterization of crosslinking reaction and work at transition point. Acta Polym 50:383–390. doi:10.1002/(SICI)1521-4044(19991201)50:11/12<383::AID-APOL383>3.0.CO;2-ZCrossRef Arndt K-F, Richter A, Ludwig S et al (1999) Poly(vinyl alcohol)/poly(acrylic acid) hydrogels: FT-IR spectroscopic characterization of crosslinking reaction and work at transition point. Acta Polym 50:383–390. doi:10.1002/(SICI)1521-4044(19991201)50:11/12<383::AID-APOL383>3.0.CO;2-ZCrossRef
Zurück zum Zitat Arndt K-F, Kuckling D, Richter A (2000) Application of sensitive hydrogels in flow control. Polym Adv Technol 11:496–505. doi:10.1002/1099-1581(200008/12)11:8/12<496::AID-PAT996>3.0.CO;2-7CrossRef Arndt K-F, Kuckling D, Richter A (2000) Application of sensitive hydrogels in flow control. Polym Adv Technol 11:496–505. doi:10.1002/1099-1581(200008/12)11:8/12<496::AID-PAT996>3.0.CO;2-7CrossRef
Zurück zum Zitat Arndt K-F, Schmidt T, Menge H (2001a) Poly(vinyl methyl ether) hydrogel formed by high energy irradiation. Macromol Symp 164:313–322. doi:10.1002/1521-3900(200102)164:1<313::AID-MASY313>3.0.CO;2-DCrossRef Arndt K-F, Schmidt T, Menge H (2001a) Poly(vinyl methyl ether) hydrogel formed by high energy irradiation. Macromol Symp 164:313–322. doi:10.1002/1521-3900(200102)164:1<313::AID-MASY313>3.0.CO;2-DCrossRef
Zurück zum Zitat Arndt K-F, Schmidt T, Reichelt R (2001b) Thermo-sensitive poly(methyl vinyl ether) micro-gel formed by high energy radiation. Polymer 42:6785–6791. doi:10.1016/S0032-3861(01)00164-1CrossRef Arndt K-F, Schmidt T, Reichelt R (2001b) Thermo-sensitive poly(methyl vinyl ether) micro-gel formed by high energy radiation. Polymer 42:6785–6791. doi:10.1016/S0032-3861(01)00164-1CrossRef
Zurück zum Zitat Baldi A, Gu Y, Loftness PE et al (2003) A hydrogel-actuated environmentally sensitive microvalve for active flow control. J Microelectromech Syst 12:613–621. doi:10.1109/JMEMS.2003.818070CrossRef Baldi A, Gu Y, Loftness PE et al (2003) A hydrogel-actuated environmentally sensitive microvalve for active flow control. J Microelectromech Syst 12:613–621. doi:10.1109/JMEMS.2003.818070CrossRef
Zurück zum Zitat Bashir R, Hilt JZ, Elibol O et al (2002) Micromechanical cantilever as an ultrasensitive pH microsensor. Appl Phys Lett 81:3091–3093. doi:10.1063/1.1514825CrossRef Bashir R, Hilt JZ, Elibol O et al (2002) Micromechanical cantilever as an ultrasensitive pH microsensor. Appl Phys Lett 81:3091–3093. doi:10.1063/1.1514825CrossRef
Zurück zum Zitat Beebe DJ, Moore JS, Bauer JM et al (2000) Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404:588–590. doi:10.1038/35007047CrossRef Beebe DJ, Moore JS, Bauer JM et al (2000) Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404:588–590. doi:10.1038/35007047CrossRef
Zurück zum Zitat Bouklas N, Huang R (2012) Swelling kinetics of polymer gels: comparison of linear and nonlinear theories. Soft Matter 8:8194–8203. doi:10.1039/C2SM25467KCrossRef Bouklas N, Huang R (2012) Swelling kinetics of polymer gels: comparison of linear and nonlinear theories. Soft Matter 8:8194–8203. doi:10.1039/C2SM25467KCrossRef
Zurück zum Zitat Boyko V, Lu Y, Richter A, Pich A (2003) Preparation and characterization of acetoacetoxyethyl methacrylate-based gels. Macromol Chem Phys 204:2031–2039. doi:10.1002/macp.200350058CrossRef Boyko V, Lu Y, Richter A, Pich A (2003) Preparation and characterization of acetoacetoxyethyl methacrylate-based gels. Macromol Chem Phys 204:2031–2039. doi:10.1002/macp.200350058CrossRef
Zurück zum Zitat Brahim S, Narinesingh D, Guiseppi-Elie A (2002) Bio-smart hydrogels: co-joined molecular recognition and signal transduction in biosensor fabrication and drug delivery. Biosens Bioelectron 17:973–981. doi:10.1016/S0956-5663(02)00089-1CrossRef Brahim S, Narinesingh D, Guiseppi-Elie A (2002) Bio-smart hydrogels: co-joined molecular recognition and signal transduction in biosensor fabrication and drug delivery. Biosens Bioelectron 17:973–981. doi:10.1016/S0956-5663(02)00089-1CrossRef
Zurück zum Zitat Chu Y, Varanasi PP, McGlade MJ, Varanasi S (1995) pH-induced swelling kinetics of polyelectrolyte hydrogels. J Appl Polym Sci 58:2161–2176. doi:10.1002/app.1995.070581203CrossRef Chu Y, Varanasi PP, McGlade MJ, Varanasi S (1995) pH-induced swelling kinetics of polyelectrolyte hydrogels. J Appl Polym Sci 58:2161–2176. doi:10.1002/app.1995.070581203CrossRef
Zurück zum Zitat De SK, Aluru NR, Johnson B et al (2002) Equilibrium swelling and kinetics of pH-responsive hydrogels: models, experiments, and simulations. J Microelectromechanical Syst 11:544–555. doi:10.1109/JMEMS.2002.803281CrossRef De SK, Aluru NR, Johnson B et al (2002) Equilibrium swelling and kinetics of pH-responsive hydrogels: models, experiments, and simulations. J Microelectromechanical Syst 11:544–555. doi:10.1109/JMEMS.2002.803281CrossRef
Zurück zum Zitat Doi M (2009) Gel dynamics. J Phys Soc Jpn 78:052001. doi:10.1143/JPSJ.78.052001CrossRef Doi M (2009) Gel dynamics. J Phys Soc Jpn 78:052001. doi:10.1143/JPSJ.78.052001CrossRef
Zurück zum Zitat Dolbow J, Fried E, Ji H (2004) Chemically induced swelling of hydrogels. J Mech Phys Solids 52:51–84. doi:10.1016/S0022-5096(03)00091-7CrossRef Dolbow J, Fried E, Ji H (2004) Chemically induced swelling of hydrogels. J Mech Phys Solids 52:51–84. doi:10.1016/S0022-5096(03)00091-7CrossRef
Zurück zum Zitat English AE, Edelman ER, Tanaka T (2000) Polymer hydrogel phase transitions, Chapter 6. In: Tanaka T (ed) Experimental methods in polymer science. Academic, Boston, pp 547–589CrossRef English AE, Edelman ER, Tanaka T (2000) Polymer hydrogel phase transitions, Chapter 6. In: Tanaka T (ed) Experimental methods in polymer science. Academic, Boston, pp 547–589CrossRef
Zurück zum Zitat Filipcsei G, Fehér J, Zrınyi M (2000) Electric field sensitive neutral polymer gels. J Mol Struct 554:109–117. doi:10.1016/S0022-2860(00)00564-0CrossRef Filipcsei G, Fehér J, Zrınyi M (2000) Electric field sensitive neutral polymer gels. J Mol Struct 554:109–117. doi:10.1016/S0022-2860(00)00564-0CrossRef
Zurück zum Zitat Flory PJ (1942) Thermodynamics of high polymer solutions. J Chem Phys 10:51–61. doi:10.1063/1.1723621CrossRef Flory PJ (1942) Thermodynamics of high polymer solutions. J Chem Phys 10:51–61. doi:10.1063/1.1723621CrossRef
Zurück zum Zitat Flory PJ (1944) Network structure and the elastic properties of vulcanized rubber. Chem Rev 35:51–75. doi:10.1021/cr60110a002CrossRef Flory PJ (1944) Network structure and the elastic properties of vulcanized rubber. Chem Rev 35:51–75. doi:10.1021/cr60110a002CrossRef
Zurück zum Zitat Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca
Zurück zum Zitat Flory PJ, Rehner J (1943a) Statistical mechanics of cross‐linked polymer networks I. Rubberlike elasticity. J Chem Phys 11:512–520. doi:10.1063/1.1723791CrossRef Flory PJ, Rehner J (1943a) Statistical mechanics of cross‐linked polymer networks I. Rubberlike elasticity. J Chem Phys 11:512–520. doi:10.1063/1.1723791CrossRef
Zurück zum Zitat Flory PJ, Rehner J (1943b) Statistical mechanics of cross‐linked polymer networks II. Swelling. J Chem Phys 11:521–526. doi:10.1063/1.1723792CrossRef Flory PJ, Rehner J (1943b) Statistical mechanics of cross‐linked polymer networks II. Swelling. J Chem Phys 11:521–526. doi:10.1063/1.1723792CrossRef
Zurück zum Zitat Gehrke SH (1993) Synthesis, equilibrium swelling, kinetics, permeability and applications of environmentally responsive gels. In: Dušek PK (ed) Responsive gels: volume transitions II. Springer, Berlin/Heidelberg, pp 81–144CrossRef Gehrke SH (1993) Synthesis, equilibrium swelling, kinetics, permeability and applications of environmentally responsive gels. In: Dušek PK (ed) Responsive gels: volume transitions II. Springer, Berlin/Heidelberg, pp 81–144CrossRef
Zurück zum Zitat Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15:1155–1158. doi:10.1002/adma.200304907CrossRef Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15:1155–1158. doi:10.1002/adma.200304907CrossRef
Zurück zum Zitat Greiner R, Allerdissen M, Voigt A, Richter A (2012) Fluidic microchemomechanical integrated circuits processing chemical information. Lab Chip 12:5034–5044. doi:10.1039/C2LC40617ACrossRef Greiner R, Allerdissen M, Voigt A, Richter A (2012) Fluidic microchemomechanical integrated circuits processing chemical information. Lab Chip 12:5034–5044. doi:10.1039/C2LC40617ACrossRef
Zurück zum Zitat Han IS, Han M-H, Kim J et al (2002) Constant-volume hydrogel osmometer: a new device concept for miniature biosensors. Biomacromolecules 3:1271–1275. doi:10.1021/bm0255894CrossRef Han IS, Han M-H, Kim J et al (2002) Constant-volume hydrogel osmometer: a new device concept for miniature biosensors. Biomacromolecules 3:1271–1275. doi:10.1021/bm0255894CrossRef
Zurück zum Zitat Haraguchi K, Takehisa T (2002) Nanocomposite hydrogels: a unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv Mater 14:1120–1124. doi:10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9CrossRef Haraguchi K, Takehisa T (2002) Nanocomposite hydrogels: a unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv Mater 14:1120–1124. doi:10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9CrossRef
Zurück zum Zitat Hermans JJ (1947) Deformation and swelling of polymer networks containing comparatively long chains. Trans Faraday Soc 43:591–600. doi:10.1039/TF9474300591CrossRef Hermans JJ (1947) Deformation and swelling of polymer networks containing comparatively long chains. Trans Faraday Soc 43:591–600. doi:10.1039/TF9474300591CrossRef
Zurück zum Zitat Hirotsu S (1991) Softening of bulk modulus and negative Poisson’s ratio near the volume phase transition of polymer gels. J Chem Phys 94:3949–3957. doi:10.1063/1.460672CrossRef Hirotsu S (1991) Softening of bulk modulus and negative Poisson’s ratio near the volume phase transition of polymer gels. J Chem Phys 94:3949–3957. doi:10.1063/1.460672CrossRef
Zurück zum Zitat Hong W, Zhao X, Suo Z (2010) Large deformation and electrochemistry of polyelectrolyte gels. J Mech Phys Solids 58:558–577. doi:10.1016/j.jmps.2010.01.005CrossRef Hong W, Zhao X, Suo Z (2010) Large deformation and electrochemistry of polyelectrolyte gels. J Mech Phys Solids 58:558–577. doi:10.1016/j.jmps.2010.01.005CrossRef
Zurück zum Zitat Huggins ML (1941) Solutions of long chain compounds. J Chem Phys 9:440. doi:10.1063/1.1750930CrossRef Huggins ML (1941) Solutions of long chain compounds. J Chem Phys 9:440. doi:10.1063/1.1750930CrossRef
Zurück zum Zitat Huggins ML (1943) Thermodynamic properties of solutions of high polymers: the empirical constant in the activity equation. Ann N Y Acad Sci 44:431–443. doi:10.1111/j.1749-6632.1943.tb52763.xCrossRef Huggins ML (1943) Thermodynamic properties of solutions of high polymers: the empirical constant in the activity equation. Ann N Y Acad Sci 44:431–443. doi:10.1111/j.1749-6632.1943.tb52763.xCrossRef
Zurück zum Zitat Irie M, Misumi Y, Tanaka T (1993) Stimuli-responsive polymers: chemical induced reversible phase separation of an aqueous solution of poly(N-isopropylacrylamide) with pendent crown ether groups. Polymer 34:4531–4535. doi:10.1016/0032-3861(93)90160-CCrossRef Irie M, Misumi Y, Tanaka T (1993) Stimuli-responsive polymers: chemical induced reversible phase separation of an aqueous solution of poly(N-isopropylacrylamide) with pendent crown ether groups. Polymer 34:4531–4535. doi:10.1016/0032-3861(93)90160-CCrossRef
Zurück zum Zitat Kataoka K, Miyazaki H, Bunya M et al (1998) Totally synthetic polymer gels responding to external glucose concentration: their preparation and application to on−off regulation of insulin release. J Am Chem Soc 120:12694–12695. doi:10.1021/ja982975dCrossRef Kataoka K, Miyazaki H, Bunya M et al (1998) Totally synthetic polymer gels responding to external glucose concentration: their preparation and application to on−off regulation of insulin release. J Am Chem Soc 120:12694–12695. doi:10.1021/ja982975dCrossRef
Zurück zum Zitat Kittel CH, Kroemer H (1980) Thermal physics, 2nd edn. W. H. Freeman, New York Kittel CH, Kroemer H (1980) Thermal physics, 2nd edn. W. H. Freeman, New York
Zurück zum Zitat Kuckling D, Adler H-JP, Arndt K-F et al (2000) Temperature and pH dependent solubility of novel poly(N-isopropylacrylamide)-copolymers. Macromol Chem Phys 201:273–280. doi:10.1002/(SICI)1521-3935(20000201)201:2<273::AID-MACP273>3.0.CO;2-ECrossRef Kuckling D, Adler H-JP, Arndt K-F et al (2000) Temperature and pH dependent solubility of novel poly(N-isopropylacrylamide)-copolymers. Macromol Chem Phys 201:273–280. doi:10.1002/(SICI)1521-3935(20000201)201:2<273::AID-MACP273>3.0.CO;2-ECrossRef
Zurück zum Zitat Kuhn W, Kunzle O, Katchalsky A (2010) Dénouement de molécules en chaînes polyvalentes par des charges électriques en solution. Bull Soc Chim Belg 57:421–431. doi:10.1002/bscb.19480571002CrossRef Kuhn W, Kunzle O, Katchalsky A (2010) Dénouement de molécules en chaînes polyvalentes par des charges électriques en solution. Bull Soc Chim Belg 57:421–431. doi:10.1002/bscb.19480571002CrossRef
Zurück zum Zitat Kurauchi T, Shiga T, Hirose Y, Okada A (1991) Deformation behaviors of polymer gels in electric field. In: DeRossi D, Kajiwara K, Osada Y, Yamauchi A (eds) Polymer gels. Plenum Press, New York, pp 237–246CrossRef Kurauchi T, Shiga T, Hirose Y, Okada A (1991) Deformation behaviors of polymer gels in electric field. In: DeRossi D, Kajiwara K, Osada Y, Yamauchi A (eds) Polymer gels. Plenum Press, New York, pp 237–246CrossRef
Zurück zum Zitat Larobina D, Greco F (2012) Prediction of the effects of constitutive viscoelasticity on stress-diffusion coupling in gels. J Chem Phys 136:134904. doi:10.1063/1.3699978CrossRef Larobina D, Greco F (2012) Prediction of the effects of constitutive viscoelasticity on stress-diffusion coupling in gels. J Chem Phys 136:134904. doi:10.1063/1.3699978CrossRef
Zurück zum Zitat Li W, Zhao H, Teasdale PR et al (2002) Synthesis and characterisation of a polyacrylamide–polyacrylic acid copolymer hydrogel for environmental analysis of Cu and Cd. React Funct Polym 52:31–41. doi:10.1016/S1381-5148(02)00055-XCrossRef Li W, Zhao H, Teasdale PR et al (2002) Synthesis and characterisation of a polyacrylamide–polyacrylic acid copolymer hydrogel for environmental analysis of Cu and Cd. React Funct Polym 52:31–41. doi:10.1016/S1381-5148(02)00055-XCrossRef
Zurück zum Zitat Lifshitz EM, Kosevich AM, Pitaevskii LP (1986) Fundamental equations, Chapter I. In: Lifshitz EM, Kosevich AM, Pitaevskii LP (eds) Theory of elasticity, 3rd edn. Butterworth-Heinemann, Oxford, pp 1–37CrossRef Lifshitz EM, Kosevich AM, Pitaevskii LP (1986) Fundamental equations, Chapter I. In: Lifshitz EM, Kosevich AM, Pitaevskii LP (eds) Theory of elasticity, 3rd edn. Butterworth-Heinemann, Oxford, pp 1–37CrossRef
Zurück zum Zitat Liu X, Zhang X, Cong J et al (2003) Demonstration of etched cladding fiber Bragg grating-based sensors with hydrogel coating. Sens Actuators B 96:468–472. doi:10.1016/S0925-4005(03)00605-1CrossRef Liu X, Zhang X, Cong J et al (2003) Demonstration of etched cladding fiber Bragg grating-based sensors with hydrogel coating. Sens Actuators B 96:468–472. doi:10.1016/S0925-4005(03)00605-1CrossRef
Zurück zum Zitat Luo Q, Mutlu S, Gianchandani YB et al (2003) Monolithic valves for microfluidic chips based on thermoresponsive polymer gels. ELECTROPHORESIS 24:3694–3702. doi:10.1002/elps.200305577CrossRef Luo Q, Mutlu S, Gianchandani YB et al (2003) Monolithic valves for microfluidic chips based on thermoresponsive polymer gels. ELECTROPHORESIS 24:3694–3702. doi:10.1002/elps.200305577CrossRef
Zurück zum Zitat Marshall AJ, Blyth J, Davidson CAB, Lowe CR (2003) pH-sensitive holographic sensors. Anal Chem 75:4423–4431CrossRef Marshall AJ, Blyth J, Davidson CAB, Lowe CR (2003) pH-sensitive holographic sensors. Anal Chem 75:4423–4431CrossRef
Zurück zum Zitat Milimouk I, Hecht AM, Beysens D, Geissler E (2001) Swelling of neutralized polyelectrolyte gels. Polymer 42:487–494. doi:10.1016/S0032-3861(00)00360-8CrossRef Milimouk I, Hecht AM, Beysens D, Geissler E (2001) Swelling of neutralized polyelectrolyte gels. Polymer 42:487–494. doi:10.1016/S0032-3861(00)00360-8CrossRef
Zurück zum Zitat Mitsumata T, Ikeda K, Gong JP, Osada Y (1998) Solvent-driven chemical motor. Appl Phys Lett 73:2366–2368. doi:10.1063/1.122505CrossRef Mitsumata T, Ikeda K, Gong JP, Osada Y (1998) Solvent-driven chemical motor. Appl Phys Lett 73:2366–2368. doi:10.1063/1.122505CrossRef
Zurück zum Zitat Mitsumata T, Ikeda K, Gong JP, Osada Y (2000) Controlled motion of solvent-driven gel motor and its application as a generator. Langmuir 16:307–312. doi:10.1021/la990483oCrossRef Mitsumata T, Ikeda K, Gong JP, Osada Y (2000) Controlled motion of solvent-driven gel motor and its application as a generator. Langmuir 16:307–312. doi:10.1021/la990483oCrossRef
Zurück zum Zitat Miyata T, Asami N, Uragami T (1999) A reversibly antigen-responsive hydrogel. Nature 399:766–769. doi:10.1038/21619CrossRef Miyata T, Asami N, Uragami T (1999) A reversibly antigen-responsive hydrogel. Nature 399:766–769. doi:10.1038/21619CrossRef
Zurück zum Zitat Okay O (2009) General properties of hydrogels. In: Gerlach G, Arndt K-F (eds) Hydrogel sensors and actuators. Springer, Berlin/Heidelberg, pp 1–14CrossRef Okay O (2009) General properties of hydrogels. In: Gerlach G, Arndt K-F (eds) Hydrogel sensors and actuators. Springer, Berlin/Heidelberg, pp 1–14CrossRef
Zurück zum Zitat Okumura Y, Ito K (2001) The polyrotaxane gel: a topological gel by figure-of-eight cross-links. Adv Mater 13:485–487. doi:10.1002/1521-4095(200104)13:7<485::AID-ADMA485>3.0.CO;2-TCrossRef Okumura Y, Ito K (2001) The polyrotaxane gel: a topological gel by figure-of-eight cross-links. Adv Mater 13:485–487. doi:10.1002/1521-4095(200104)13:7<485::AID-ADMA485>3.0.CO;2-TCrossRef
Zurück zum Zitat Osada Y, Gong J-P (1998) Soft and wet materials: polymer gels. Adv Mater 10:827–837. doi:10.1002/(SICI)1521-4095(199808)10:11<827::AID-ADMA827>3.0.CO;2-LCrossRef Osada Y, Gong J-P (1998) Soft and wet materials: polymer gels. Adv Mater 10:827–837. doi:10.1002/(SICI)1521-4095(199808)10:11<827::AID-ADMA827>3.0.CO;2-LCrossRef
Zurück zum Zitat Osada Y, Takeuchi Y (1981) Water and protein permeation through polymeric membrane having mechanochemically expanding and contracting pores. Function of chemical valve. I. J Polym Sci Polym Lett Ed 19:303–308. doi:10.1002/pol.1981.130190605CrossRef Osada Y, Takeuchi Y (1981) Water and protein permeation through polymeric membrane having mechanochemically expanding and contracting pores. Function of chemical valve. I. J Polym Sci Polym Lett Ed 19:303–308. doi:10.1002/pol.1981.130190605CrossRef
Zurück zum Zitat Osada Y, Takeuchi Y (1983) Protein and sugar separation by mechanochemical membrane having “chemical valve” function. Polym J 15:279–284. doi:10.1295/polymj.15.279CrossRef Osada Y, Takeuchi Y (1983) Protein and sugar separation by mechanochemical membrane having “chemical valve” function. Polym J 15:279–284. doi:10.1295/polymj.15.279CrossRef
Zurück zum Zitat Peppas NA, Huang Y (2002) Polymers and gels as molecular recognition agents. Pharm Res 19:578–587. doi:10.1023/A:1015389609344CrossRef Peppas NA, Huang Y (2002) Polymers and gels as molecular recognition agents. Pharm Res 19:578–587. doi:10.1023/A:1015389609344CrossRef
Zurück zum Zitat Peters EC, Svec F, Fréchet JMJ (1997) Thermally responsive rigid polymer monoliths. Adv Mater 9:630–633. doi:10.1002/adma.19970090807CrossRef Peters EC, Svec F, Fréchet JMJ (1997) Thermally responsive rigid polymer monoliths. Adv Mater 9:630–633. doi:10.1002/adma.19970090807CrossRef
Zurück zum Zitat Richter A (2006) Hydrogel-based μTAS. In: Leondes CT (ed) MEMS/NEMS. Springer US, New York, pp 473–503CrossRef Richter A (2006) Hydrogel-based μTAS. In: Leondes CT (ed) MEMS/NEMS. Springer US, New York, pp 473–503CrossRef
Zurück zum Zitat Richter A (2009) Hydrogels for actuators. In: Gerlach G, Arndt K-F (eds) Hydrogel sensors and actuators. Springer, Berlin/Heidelberg, pp 221–248CrossRef Richter A (2009) Hydrogels for actuators. In: Gerlach G, Arndt K-F (eds) Hydrogel sensors and actuators. Springer, Berlin/Heidelberg, pp 221–248CrossRef
Zurück zum Zitat Richter A, Paschew G (2009) Optoelectrothermic control of highly integrated polymer-based MEMS applied in an artificial skin. Adv Mater 21:979–983. doi:10.1002/adma.200802737CrossRef Richter A, Paschew G (2009) Optoelectrothermic control of highly integrated polymer-based MEMS applied in an artificial skin. Adv Mater 21:979–983. doi:10.1002/adma.200802737CrossRef
Zurück zum Zitat Richter A, Kuckling D, Howitz S et al (2003) Electronically controllable microvalves based on smart hydrogels: magnitudes and potential applications. J Microelectromech Syst 12:748–753. doi:10.1109/JMEMS.2003.817898CrossRef Richter A, Kuckling D, Howitz S et al (2003) Electronically controllable microvalves based on smart hydrogels: magnitudes and potential applications. J Microelectromech Syst 12:748–753. doi:10.1109/JMEMS.2003.817898CrossRef
Zurück zum Zitat Richter A, Bund A, Keller M, Arndt K-F (2004) Characterization of a microgravimetric sensor based on pH sensitive hydrogels. Sens Actuators B 99:579–585. doi:10.1016/j.snb.2004.01.011CrossRef Richter A, Bund A, Keller M, Arndt K-F (2004) Characterization of a microgravimetric sensor based on pH sensitive hydrogels. Sens Actuators B 99:579–585. doi:10.1016/j.snb.2004.01.011CrossRef
Zurück zum Zitat Richter A, Wenzel J, Kretschmer K (2007) Mechanically adjustable chemostats based on stimuli-responsive polymers. Sens Actuators B 125:569–573. doi:10.1016/j.snb.2007.03.002CrossRef Richter A, Wenzel J, Kretschmer K (2007) Mechanically adjustable chemostats based on stimuli-responsive polymers. Sens Actuators B 125:569–573. doi:10.1016/j.snb.2007.03.002CrossRef
Zurück zum Zitat Richter A, Paschew G, Klatt S et al (2008) Review on hydrogel-based pH sensors and microsensors. Sensors 8:561–581. doi:10.3390/s8010561CrossRef Richter A, Paschew G, Klatt S et al (2008) Review on hydrogel-based pH sensors and microsensors. Sensors 8:561–581. doi:10.3390/s8010561CrossRef
Zurück zum Zitat Rubinstein M, Colby RH (2003) Polymer physics. Oxford University Press, Oxford Rubinstein M, Colby RH (2003) Polymer physics. Oxford University Press, Oxford
Zurück zum Zitat Sakai T, Matsunaga T, Yamamoto Y et al (2008) Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers. Macromolecules 41:5379–5384. doi:10.1021/ma800476xCrossRef Sakai T, Matsunaga T, Yamamoto Y et al (2008) Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers. Macromolecules 41:5379–5384. doi:10.1021/ma800476xCrossRef
Zurück zum Zitat Schild HG (1992) Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci 17:163–249. doi:10.1016/0079-6700(92)90023-RCrossRef Schild HG (1992) Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci 17:163–249. doi:10.1016/0079-6700(92)90023-RCrossRef
Zurück zum Zitat Shibayama M (1998) Spatial inhomogeneity and dynamic fluctuations of polymer gels. Macromol Chem Phys 199:1–30. doi:10.1002/(SICI)1521-3935(19980101)199:1<1::AID-MACP1>3.0.CO;2-MCrossRef Shibayama M (1998) Spatial inhomogeneity and dynamic fluctuations of polymer gels. Macromol Chem Phys 199:1–30. doi:10.1002/(SICI)1521-3935(19980101)199:1<1::AID-MACP1>3.0.CO;2-MCrossRef
Zurück zum Zitat Shibayama M (2006) Universality and specificity of polymer gels viewed by scattering methods. Bull Chem Soc Jpn 79:1799–1819. doi:10.1246/bcsj.79.1799CrossRef Shibayama M (2006) Universality and specificity of polymer gels viewed by scattering methods. Bull Chem Soc Jpn 79:1799–1819. doi:10.1246/bcsj.79.1799CrossRef
Zurück zum Zitat Shibayama M (2012) Structure–mechanical property relationship of tough hydrogels. Soft Matter 8:8030–8038. doi:10.1039/C2SM25325ACrossRef Shibayama M (2012) Structure–mechanical property relationship of tough hydrogels. Soft Matter 8:8030–8038. doi:10.1039/C2SM25325ACrossRef
Zurück zum Zitat Shibayama M, Norisuye T (2002) Gel formation analyses by dynamic light scattering. Bull Chem Soc Jpn 75:641–659. doi:10.1246/bcsj.75.641CrossRef Shibayama M, Norisuye T (2002) Gel formation analyses by dynamic light scattering. Bull Chem Soc Jpn 75:641–659. doi:10.1246/bcsj.75.641CrossRef
Zurück zum Zitat Skouri R, Schosseler F, Munch JP, Candau SJ (1995) Swelling and elastic properties of polyelectrolyte gels. Macromolecules 28:197–210. doi:10.1021/ma00105a026CrossRef Skouri R, Schosseler F, Munch JP, Candau SJ (1995) Swelling and elastic properties of polyelectrolyte gels. Macromolecules 28:197–210. doi:10.1021/ma00105a026CrossRef
Zurück zum Zitat Suzuki M (1991) Amphoteric polyvinyl alcohol hydrogel and electrohydrodynamic control method for artificial muscles. In: DeRossi D, Kajiwara K, Osada Y, Yamauchi A (eds) Polymer gels. Plenum Press, New York, pp 221–236CrossRef Suzuki M (1991) Amphoteric polyvinyl alcohol hydrogel and electrohydrodynamic control method for artificial muscles. In: DeRossi D, Kajiwara K, Osada Y, Yamauchi A (eds) Polymer gels. Plenum Press, New York, pp 221–236CrossRef
Zurück zum Zitat Suzuki A, Suzuki H (1995) Hysteretic behavior and irreversibility of polymer gels by pH change. J Chem Phys 103:4706–4710. doi:10.1063/1.470608CrossRef Suzuki A, Suzuki H (1995) Hysteretic behavior and irreversibility of polymer gels by pH change. J Chem Phys 103:4706–4710. doi:10.1063/1.470608CrossRef
Zurück zum Zitat Suzuki A, Tanaka T (1990) Phase transition in polymer gels induced by visible light. Nature 346:345–347. doi:10.1038/346345a0CrossRef Suzuki A, Tanaka T (1990) Phase transition in polymer gels induced by visible light. Nature 346:345–347. doi:10.1038/346345a0CrossRef
Zurück zum Zitat Tanaka T (1978) Collapse of gels and the critical endpoint. Phys Rev Lett 40:820–823. doi:10.1103/PhysRevLett.40.820CrossRef Tanaka T (1978) Collapse of gels and the critical endpoint. Phys Rev Lett 40:820–823. doi:10.1103/PhysRevLett.40.820CrossRef
Zurück zum Zitat Tanaka T, Fillmore DJ (1979) Kinetics of swelling of gels. J Chem Phys 70:1214–1218. doi:10.1063/1.437602CrossRef Tanaka T, Fillmore DJ (1979) Kinetics of swelling of gels. J Chem Phys 70:1214–1218. doi:10.1063/1.437602CrossRef
Zurück zum Zitat Tanaka T, Hocker LO, Benedek GB (1973) Spectrum of light scattered from a viscoelastic gel. J Chem Phys 59:5151–5159. doi:10.1063/1.1680734CrossRef Tanaka T, Hocker LO, Benedek GB (1973) Spectrum of light scattered from a viscoelastic gel. J Chem Phys 59:5151–5159. doi:10.1063/1.1680734CrossRef
Zurück zum Zitat Tanaka T, Nishio I, Sun S-T, Ueno-Nishio S (1982) Collapse of gels in an electric field. Science 218:467–469. doi:10.1126/science.218.4571.467CrossRef Tanaka T, Nishio I, Sun S-T, Ueno-Nishio S (1982) Collapse of gels in an electric field. Science 218:467–469. doi:10.1126/science.218.4571.467CrossRef
Zurück zum Zitat Tanaka T, Wang C, Pande V et al (1995) Polymer gels that can recognize and recover molecules. Faraday Discuss 101:201–206. doi:10.1039/FD9950100201CrossRef Tanaka T, Wang C, Pande V et al (1995) Polymer gels that can recognize and recover molecules. Faraday Discuss 101:201–206. doi:10.1039/FD9950100201CrossRef
Zurück zum Zitat Tomari T, Doi M (1994) Swelling dynamics of a gel undergoing volume transition. J Phys Soc Jpn 63:2093–2101. doi:10.1143/JPSJ.63.2093CrossRef Tomari T, Doi M (1994) Swelling dynamics of a gel undergoing volume transition. J Phys Soc Jpn 63:2093–2101. doi:10.1143/JPSJ.63.2093CrossRef
Zurück zum Zitat Wall FT (1942) Statistical thermodynamics of rubber. J Chem Phys 10:132–134. doi:10.1063/1.1723668CrossRef Wall FT (1942) Statistical thermodynamics of rubber. J Chem Phys 10:132–134. doi:10.1063/1.1723668CrossRef
Zurück zum Zitat Wall FT (1943) Statistical thermodynamics of rubber. III. J Chem Phys 11:527–530. doi:10.1063/1.1723793CrossRef Wall FT (1943) Statistical thermodynamics of rubber. III. J Chem Phys 11:527–530. doi:10.1063/1.1723793CrossRef
Zurück zum Zitat Wall FT, Flory PJ (1951) Statistical thermodynamics of rubber elasticity. J Chem Phys 19:1435–1439. doi:10.1063/1.1748098CrossRef Wall FT, Flory PJ (1951) Statistical thermodynamics of rubber elasticity. J Chem Phys 19:1435–1439. doi:10.1063/1.1748098CrossRef
Zurück zum Zitat Wang X (2007) Modeling the nonlinear large deformation kinetics of volume phase transition for the neutral thermosensitive hydrogels. J Chem Phys 127:174705. doi:10.1063/1.2779029CrossRef Wang X (2007) Modeling the nonlinear large deformation kinetics of volume phase transition for the neutral thermosensitive hydrogels. J Chem Phys 127:174705. doi:10.1063/1.2779029CrossRef
Zurück zum Zitat Wang X, Hong W (2012) A visco-poroelastic theory for polymeric gels. Proc R Soc Lond Math Phys Eng Sci 468:3824–3841. doi:10.1098/rspa.2012.0385CrossRef Wang X, Hong W (2012) A visco-poroelastic theory for polymeric gels. Proc R Soc Lond Math Phys Eng Sci 468:3824–3841. doi:10.1098/rspa.2012.0385CrossRef
Zurück zum Zitat Whitaker S (1986) Flow in porous media I: a theoretical derivation of Darcy’s law. Transp Porous Media 1:3–25. doi:10.1007/BF01036523CrossRef Whitaker S (1986) Flow in porous media I: a theoretical derivation of Darcy’s law. Transp Porous Media 1:3–25. doi:10.1007/BF01036523CrossRef
Zurück zum Zitat Zrínyi M, Szabó D (2001) Muscular contraction mimicked by magnetic gels. Int J Mod Phys B 15:557–563. doi:10.1142/S0217979201005015CrossRef Zrínyi M, Szabó D (2001) Muscular contraction mimicked by magnetic gels. Int J Mod Phys B 15:557–563. doi:10.1142/S0217979201005015CrossRef
Metadaten
Titel
Polymer Gels as EAPs: Fundamentals
verfasst von
Andreas Voigt
Andreas Richter
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-31530-0_1

Neuer Inhalt