Skip to main content

2020 | OriginalPaper | Buchkapitel

Polynomial-Time Solvability of One Optimization Problem Induced by Processing and Analyzing Quasiperiodic ECG and PPG Signals

verfasst von : Alexander Kel’manov, Sergey Khamidullin, Liudmila Mikhailova, Pavel Ruzankin

Erschienen in: Optimization and Applications

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper is devoted to an unexplored discrete optimization problem, which can be interpreted as a problem of least mean squares approximation of some observed discrete-time signal (a numerical time series) by an unobservable quasiperiodic (almost periodic) pulse signal generated by a pulse with a given pattern (reference) shape. Quasiperiodicity is understood, first, in the sense of admissible fluctuations of the interval between repetitions of the reference pulse, and second, in the sense of admissible nonlinear time expansions of its reference shape. Such problems are common in biomedical applications related to monitoring and analyzing electrocardiogram (ECG), photoplethysmogram (PPG), and several other signals. In the optimization model, the number of generated (admissible or approximating) quasiperiodic pulse sequences grows exponentially with the duration of the discrete-time signal (i.e., with the number of points in the time series). The size of the admissible solutions set also grows exponentially. However, despite that exponential growth, we have constructively proved the optimization problem polynomial-time solvability. Namely, we propose an algorithm that finds an optimal solution to the problem in \(\mathcal {O} (T_{\max }^{3}N)\) time; where N is the duration of the observed signal (the number of points in the time series), \( T_{\max } \le N \) is a positive integer number which bounds the fluctuations of the repetition period. If \(T_{\max }\) is a part of the input, then the algorithm’s running time is \( \mathcal {O} (N^{4}) \), i.e., the algorithm is polynomial. If \(T_{\max }\) is a fixed parameter (that is typical for applications), then the running-time of the algorithm is \( \mathcal {O} (N) \), i.e., the algorithm is linear in time. Numerical simulation examples demonstrate the robustness of the algorithm in the presence of additive noise.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lin, C., Mailhes, C., Tourneret, J.-Y.: P- and T-wave delineation in ECG signals using a Bayesian approach and a partially collapsed Gibbs sampler. IEEE Trans. Biomed. Eng. 57(12), 2840–2849 (2010)CrossRef Lin, C., Mailhes, C., Tourneret, J.-Y.: P- and T-wave delineation in ECG signals using a Bayesian approach and a partially collapsed Gibbs sampler. IEEE Trans. Biomed. Eng. 57(12), 2840–2849 (2010)CrossRef
2.
Zurück zum Zitat Akhbari, M., Shamsollahi, M.B., Sayadi, O., Armoundas, A.A., Jutten, C.: ECG segmentation and fiducial point extraction using multi hidden Markov model. Comput. Biol. Med. 79, 21–29 (2016)CrossRef Akhbari, M., Shamsollahi, M.B., Sayadi, O., Armoundas, A.A., Jutten, C.: ECG segmentation and fiducial point extraction using multi hidden Markov model. Comput. Biol. Med. 79, 21–29 (2016)CrossRef
4.
Zurück zum Zitat Kel’manov, A.V., Khamidullin, S.A.: A posteriori detection of a given number of truncated subsequences in a quasiperiodic Sequence. Pattern Recogn. Image Anal. 10(4), 500–513 (2000)MATH Kel’manov, A.V., Khamidullin, S.A.: A posteriori detection of a given number of truncated subsequences in a quasiperiodic Sequence. Pattern Recogn. Image Anal. 10(4), 500–513 (2000)MATH
5.
Zurück zum Zitat Kel’manov, A.V., Khamidullin, S.A.: Posterion detection of a given number of identical subsequences in a quasi-periodic sequence. Comp. Math. Math. Phys. 41(5), 762–774 (2001)MATH Kel’manov, A.V., Khamidullin, S.A.: Posterion detection of a given number of identical subsequences in a quasi-periodic sequence. Comp. Math. Math. Phys. 41(5), 762–774 (2001)MATH
6.
Zurück zum Zitat Kel’manov, A.V., Jeon, B.: A posteriori joint detection and discrimination of pulses in a quasiperiodic pulse train. IEEE Trans. Signal Process. 52(3), 645–656 (2004)MathSciNetCrossRef Kel’manov, A.V., Jeon, B.: A posteriori joint detection and discrimination of pulses in a quasiperiodic pulse train. IEEE Trans. Signal Process. 52(3), 645–656 (2004)MathSciNetCrossRef
7.
Zurück zum Zitat Kel’manov, A.V., Khamidullin, S.A.: A posteriori detection of a quasiperiodically recurring fragment in numerical sequences in the presence of noise and data loss. Pattern Recogn. Image Anal. 14(3), 421–434 (2004) Kel’manov, A.V., Khamidullin, S.A.: A posteriori detection of a quasiperiodically recurring fragment in numerical sequences in the presence of noise and data loss. Pattern Recogn. Image Anal. 14(3), 421–434 (2004)
8.
Zurück zum Zitat Kel’manov, A.V., Mikhailova, L.V.: A posteriori joint detection of reference fragments in a quasi-periodic sequence. Comp. Math. Math. Phys. 48(5), 850–865 (2008)CrossRef Kel’manov, A.V., Mikhailova, L.V.: A posteriori joint detection of reference fragments in a quasi-periodic sequence. Comp. Math. Math. Phys. 48(5), 850–865 (2008)CrossRef
9.
Zurück zum Zitat Kel’manov, A.V.: Off-line detection of a quasi-periodically recurring fragment in a numerical sequence. Proc. Steklov Inst. Math. 263(2 Suppl.), S84–S92 (2008)MathSciNetCrossRef Kel’manov, A.V.: Off-line detection of a quasi-periodically recurring fragment in a numerical sequence. Proc. Steklov Inst. Math. 263(2 Suppl.), S84–S92 (2008)MathSciNetCrossRef
10.
Zurück zum Zitat Kel’manov, A.V., Mikhailova, L.V.: Joint detection of a given number of reference fragments in a quasi-periodic sequence and its partition into segments containing series of identical fragments. Comp. Math. Math. Phys. 46(1), 165–181 (2006)CrossRef Kel’manov, A.V., Mikhailova, L.V.: Joint detection of a given number of reference fragments in a quasi-periodic sequence and its partition into segments containing series of identical fragments. Comp. Math. Math. Phys. 46(1), 165–181 (2006)CrossRef
11.
Zurück zum Zitat Voskoboynikova, G., Khairetdinov, M.: Numerical modeling of posteriori algorithms for the geophysical monitoring. CCIS 549, 190–200 (2015) Voskoboynikova, G., Khairetdinov, M.: Numerical modeling of posteriori algorithms for the geophysical monitoring. CCIS 549, 190–200 (2015)
12.
Zurück zum Zitat Carter, J.A., Agol, E., et al.: Kepler-36: a pair of planets with neighboring orbits and dissimilar densities. Science 337(6094), 556–559 (2012)CrossRef Carter, J.A., Agol, E., et al.: Kepler-36: a pair of planets with neighboring orbits and dissimilar densities. Science 337(6094), 556–559 (2012)CrossRef
13.
Zurück zum Zitat Carter, J.A., Agol, E.: The quasiperiodic automated transit search algorithm. Astrophys. J. 765(2), 132 (2013)CrossRef Carter, J.A., Agol, E.: The quasiperiodic automated transit search algorithm. Astrophys. J. 765(2), 132 (2013)CrossRef
15.
Zurück zum Zitat Rajni, R., Kaur, I.: Electrocardiogram signal analysis - an overview. Int. J. Comput. Appl. 84(7), 22–25 (2013) Rajni, R., Kaur, I.: Electrocardiogram signal analysis - an overview. Int. J. Comput. Appl. 84(7), 22–25 (2013)
17.
Zurück zum Zitat Shelley, K., Shelley, S.: Pulse oximeter waveform: photoelectric plethysmography. In: Carol, L., Hines, R., Blitt, C. (eds.) Clinical Monitoring, pp. 420–428. W.B. Saunders Company, Philadelphia (2001) Shelley, K., Shelley, S.: Pulse oximeter waveform: photoelectric plethysmography. In: Carol, L., Hines, R., Blitt, C. (eds.) Clinical Monitoring, pp. 420–428. W.B. Saunders Company, Philadelphia (2001)
Metadaten
Titel
Polynomial-Time Solvability of One Optimization Problem Induced by Processing and Analyzing Quasiperiodic ECG and PPG Signals
verfasst von
Alexander Kel’manov
Sergey Khamidullin
Liudmila Mikhailova
Pavel Ruzankin
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-38603-0_7