Skip to main content
Erschienen in: Cellulose 2/2017

29.11.2016 | Review Paper

Polysaccharide nanocrystals as fillers for PLA based nanocomposites

verfasst von: Roberto Scaffaro, Luigi Botta, Francesco Lopresti, Andrea Maio, Fiorenza Sutera

Erschienen in: Cellulose | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The development of green nanocomposites based on biopolymers and bio-based nanofillers has attracted over the recent years the attention of academic and industrial research. Indeed, these nanocomposites could replace some oil-derived polymers and thus helping to overcome environmental problems. In this regard, PLA as matrix and polysaccharide nanocrystals as fillers are the most promising components to obtain high-performance green bio-nanocomposites suitable for different applications, particularly for packaging and biomedical applications. Indeed, at present, due to its processability, mechanical and biological properties, as well as its commercial availability, poly(lactic acid) (PLA) possesses one of the highest potentials among biopolymers whereas polysaccharide nanocrystals can be considered the most promising bio-based reinforcements due to their availability, renewability, versatility, biodegradability and high aspect ratio. Aim of this review is to give an overview on the preparation routes and main properties of PLA/polysaccharide nanocomposites highlighting the main differences among the three main polysaccharide nanocrystals, i.e. cellulose, chitin, and starch.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abdulkhani A, Hosseinzadeh J, Ashori A et al (2014) Preparation and characterization of modified cellulose nanofibers reinforced polylactic acid nanocomposite. Polym Test 35:73–79CrossRef Abdulkhani A, Hosseinzadeh J, Ashori A et al (2014) Preparation and characterization of modified cellulose nanofibers reinforced polylactic acid nanocomposite. Polym Test 35:73–79CrossRef
Zurück zum Zitat Almasi H, Ghanbarzadeh B, Dehghannya J et al (2015) Novel nanocomposites based on fatty acid modified cellulose nanofibers/poly(lactic acid): morphological and physical properties. Food Packag Shelf Life 5:21–31. doi:10.1016/j.fpsl.2015.04.003 CrossRef Almasi H, Ghanbarzadeh B, Dehghannya J et al (2015) Novel nanocomposites based on fatty acid modified cellulose nanofibers/poly(lactic acid): morphological and physical properties. Food Packag Shelf Life 5:21–31. doi:10.​1016/​j.​fpsl.​2015.​04.​003 CrossRef
Zurück zum Zitat Ambrosio-Martín J, Fabra MJ, Lopez-Rubio A, Lagaron JM (2015a) Melt polycondensation to improve the dispersion of bacterial cellulose into polylactide via melt compounding: enhanced barrier and mechanical properties. Cellulose 22:1201–1226CrossRef Ambrosio-Martín J, Fabra MJ, Lopez-Rubio A, Lagaron JM (2015a) Melt polycondensation to improve the dispersion of bacterial cellulose into polylactide via melt compounding: enhanced barrier and mechanical properties. Cellulose 22:1201–1226CrossRef
Zurück zum Zitat Ambrosio-Martín J, Lopez-Rubio A, Fabra MJ et al (2015b) Assessment of ball milling methodology to develop polylactide-bacterial cellulose nanocrystals nanocomposites. J Appl Polym Sci. doi:10.1002/app.41605 Ambrosio-Martín J, Lopez-Rubio A, Fabra MJ et al (2015b) Assessment of ball milling methodology to develop polylactide-bacterial cellulose nanocrystals nanocomposites. J Appl Polym Sci. doi:10.​1002/​app.​41605
Zurück zum Zitat Angellier-Coussy H, Dufresne A (2013) Mechanical properties of starch-based nanocomposites. In: Dufresne A, Thomas S, Pothan LA (eds) Biopolymer nanocomposites: processing, properties, and applications. Wiley, New York, pp 261–292CrossRef Angellier-Coussy H, Dufresne A (2013) Mechanical properties of starch-based nanocomposites. In: Dufresne A, Thomas S, Pothan LA (eds) Biopolymer nanocomposites: processing, properties, and applications. Wiley, New York, pp 261–292CrossRef
Zurück zum Zitat Ashwar BA, Gani A, Wani IA et al (2016) Production of resistant starch from rice by dual autoclaving-retrogradation treatment: invitro digestibility, thermal and structural characterization. Food Hydrocoll 56:108–117. doi:10.1016/j.foodhyd.2015.12.004 CrossRef Ashwar BA, Gani A, Wani IA et al (2016) Production of resistant starch from rice by dual autoclaving-retrogradation treatment: invitro digestibility, thermal and structural characterization. Food Hydrocoll 56:108–117. doi:10.​1016/​j.​foodhyd.​2015.​12.​004 CrossRef
Zurück zum Zitat Aspler J, Bouchard J, Hamad W et al (2013) Review of nanocellulosic products and their applications. In: Dufresne A, Sabu T, Pothan LA (eds) Biopolymer nanocomposites: processing, properties, and applications, 1st edn. Wiley Online Library, New York, pp 461–508CrossRef Aspler J, Bouchard J, Hamad W et al (2013) Review of nanocellulosic products and their applications. In: Dufresne A, Sabu T, Pothan LA (eds) Biopolymer nanocomposites: processing, properties, and applications, 1st edn. Wiley Online Library, New York, pp 461–508CrossRef
Zurück zum Zitat Aulin C, Karabulut E, Tran A et al (2013) Transparent nanocellulosic multilayer thin films on polylactic acid with tunable gas barrier properties. ACS Appl Mater Interfaces 5:7352–7359. doi:10.1021/am401700n CrossRef Aulin C, Karabulut E, Tran A et al (2013) Transparent nanocellulosic multilayer thin films on polylactic acid with tunable gas barrier properties. ACS Appl Mater Interfaces 5:7352–7359. doi:10.​1021/​am401700n CrossRef
Zurück zum Zitat Baheti V, Mishra R, Militky J, Behera BK (2014) Influence of noncellulosic contents on nano scale refinement of waste jute fibers for reinforcement in polylactic acid films. Fibers Polym 15:1500–1506. doi:10.1007/s12221-014-1500-5 CrossRef Baheti V, Mishra R, Militky J, Behera BK (2014) Influence of noncellulosic contents on nano scale refinement of waste jute fibers for reinforcement in polylactic acid films. Fibers Polym 15:1500–1506. doi:10.​1007/​s12221-014-1500-5 CrossRef
Zurück zum Zitat Blaker JJ, Lee K-Y, Mantalaris A, Bismarck A (2010) Ice-microsphere templating to produce highly porous nanocomposite PLA matrix scaffolds with pores selectively lined by bacterial cellulose nano-whiskers. Compos Sci Technol 70:1879–1888. doi:10.1016/j.compscitech.2010.05.028 CrossRef Blaker JJ, Lee K-Y, Mantalaris A, Bismarck A (2010) Ice-microsphere templating to produce highly porous nanocomposite PLA matrix scaffolds with pores selectively lined by bacterial cellulose nano-whiskers. Compos Sci Technol 70:1879–1888. doi:10.​1016/​j.​compscitech.​2010.​05.​028 CrossRef
Zurück zum Zitat Botta L, La Mantia FP, Dintcheva NT, Scaffaro R (2007) Rheological response of polyethylene/clay nanocomposites to annealing treatment. Macromol Chem Phys 208:2533–2541. doi:10.1002/macp.200700241 CrossRef Botta L, La Mantia FP, Dintcheva NT, Scaffaro R (2007) Rheological response of polyethylene/clay nanocomposites to annealing treatment. Macromol Chem Phys 208:2533–2541. doi:10.​1002/​macp.​200700241 CrossRef
Zurück zum Zitat Botta L, Scaffaro R, La Mantia FP, Dintcheva NT (2010) Effect of different matrices and nanofillers on the rheological behavior of polymer-clay nanocomposites. J Polym Sci B Polym Phys 48:344–355. doi:10.1002/polb.21896 CrossRef Botta L, Scaffaro R, La Mantia FP, Dintcheva NT (2010) Effect of different matrices and nanofillers on the rheological behavior of polymer-clay nanocomposites. J Polym Sci B Polym Phys 48:344–355. doi:10.​1002/​polb.​21896 CrossRef
Zurück zum Zitat Botta L, Mistretta MC, Palermo S et al (2015b) Characterization and processability of blends of polylactide acid with a new biodegradable medium-chain-length polyhydroxyalkanoate. J Polym Environ 23:478–486. doi:10.1007/s10924-015-0729-4 CrossRef Botta L, Mistretta MC, Palermo S et al (2015b) Characterization and processability of blends of polylactide acid with a new biodegradable medium-chain-length polyhydroxyalkanoate. J Polym Environ 23:478–486. doi:10.​1007/​s10924-015-0729-4 CrossRef
Zurück zum Zitat Braun B, Dorgan JR, Hollingsworth LO (2012) Supra-molecular ecobionanocomposites based on polylactide and cellulosic nanowhiskers: synthesis and properties. Biomacromolecules 13:2013–2019. doi:10.1021/bm300149w CrossRef Braun B, Dorgan JR, Hollingsworth LO (2012) Supra-molecular ecobionanocomposites based on polylactide and cellulosic nanowhiskers: synthesis and properties. Biomacromolecules 13:2013–2019. doi:10.​1021/​bm300149w CrossRef
Zurück zum Zitat Bulota M, Tanpichai S, Hughes M, Eichhorn SJ (2012) Micromechanics of TEMPO-oxidized fibrillated cellulose composites. ACS Appl Mater Interfaces 4:331–337. doi:10.1021/am201399q CrossRef Bulota M, Tanpichai S, Hughes M, Eichhorn SJ (2012) Micromechanics of TEMPO-oxidized fibrillated cellulose composites. ACS Appl Mater Interfaces 4:331–337. doi:10.​1021/​am201399q CrossRef
Zurück zum Zitat Chen J, Peng H, Wang X et al (2014) Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale 6:1879–1889. doi:10.1039/c3nr04941h CrossRef Chen J, Peng H, Wang X et al (2014) Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale 6:1879–1889. doi:10.​1039/​c3nr04941h CrossRef
Zurück zum Zitat Chen X, Wei S, Gunesoglu C et al (2010) Electrospun magnetic fibrillar polystyrene nanocomposites reinforced with nickel nanoparticles. Macromol Chem Phys 211:1775–1783. doi:10.1002/macp.201000153 CrossRef Chen X, Wei S, Gunesoglu C et al (2010) Electrospun magnetic fibrillar polystyrene nanocomposites reinforced with nickel nanoparticles. Macromol Chem Phys 211:1775–1783. doi:10.​1002/​macp.​201000153 CrossRef
Zurück zum Zitat Cho SY, Park HH, Yun YS, Jin H-J (2012) Influence of cellulose nanofibers on the morphology and physical properties of poly(lactic acid) foaming by supercritical carbon dioxide. Macromol Res 21:529–533. doi:10.1007/s13233-013-1057-y CrossRef Cho SY, Park HH, Yun YS, Jin H-J (2012) Influence of cellulose nanofibers on the morphology and physical properties of poly(lactic acid) foaming by supercritical carbon dioxide. Macromol Res 21:529–533. doi:10.​1007/​s13233-013-1057-y CrossRef
Zurück zum Zitat Cunha AG, Mougel JB, Cathala B et al (2014) Preparation of double pickering emulsions stabilized by chemically tailored nanocelluloses. Langmuir 30:9327–9335. doi:10.1021/la5017577 CrossRef Cunha AG, Mougel JB, Cathala B et al (2014) Preparation of double pickering emulsions stabilized by chemically tailored nanocelluloses. Langmuir 30:9327–9335. doi:10.​1021/​la5017577 CrossRef
Zurück zum Zitat Demczyk BG, Wang YM, Cumings J et al (2002) Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. 334:173–178 Demczyk BG, Wang YM, Cumings J et al (2002) Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. 334:173–178
Zurück zum Zitat Dufresne A (2008) Polysaccharide nano crystal reinforced nanocomposites. Can J Chem 86:484–494CrossRef Dufresne A (2008) Polysaccharide nano crystal reinforced nanocomposites. Can J Chem 86:484–494CrossRef
Zurück zum Zitat Dufresne A, Lin N (2014) Characterization of polysaccharide nanocrystal-based materials. In: Huang J, Chang RP, Lin N, Dufresne (eds) Polysaccharide-based nanocrystals: chemistry and applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 255–300 Dufresne A, Lin N (2014) Characterization of polysaccharide nanocrystal-based materials. In: Huang J, Chang RP, Lin N, Dufresne (eds) Polysaccharide-based nanocrystals: chemistry and applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 255–300
Zurück zum Zitat Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L et al (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9:57–65CrossRef Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L et al (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9:57–65CrossRef
Zurück zum Zitat Espino-Pérez E, Bras J, Ducruet V et al (2013) Influence of chemical surface modification of cellulose nanowhiskers on thermal, mechanical, and barrier properties of poly(lactide) based bionanocomposites. Eur Polym J 49:3144–3154. doi:10.1016/j.eurpolymj.2013.07.017 CrossRef Espino-Pérez E, Bras J, Ducruet V et al (2013) Influence of chemical surface modification of cellulose nanowhiskers on thermal, mechanical, and barrier properties of poly(lactide) based bionanocomposites. Eur Polym J 49:3144–3154. doi:10.​1016/​j.​eurpolymj.​2013.​07.​017 CrossRef
Zurück zum Zitat Espino-Pérez E, Gilbert RG, Domenek S et al (2016) Nanocomposites with functionalised polysaccharide nanocrystals through aqueous free radical polymerisation promoted by ozonolysis. Carbohydr Polym 135:256–266CrossRef Espino-Pérez E, Gilbert RG, Domenek S et al (2016) Nanocomposites with functionalised polysaccharide nanocrystals through aqueous free radical polymerisation promoted by ozonolysis. Carbohydr Polym 135:256–266CrossRef
Zurück zum Zitat Eyholzer C, Tingaut P, Zimmermann T, Oksman K (2012) Dispersion and reinforcing potential of carboxymethylated nanofibrillated cellulose powders modified with 1-hexanol in extruded poly(lactic acid) (PLA) composites. J Polym Environ 20:1052–1062. doi:10.1007/s10924-012-0508-4 CrossRef Eyholzer C, Tingaut P, Zimmermann T, Oksman K (2012) Dispersion and reinforcing potential of carboxymethylated nanofibrillated cellulose powders modified with 1-hexanol in extruded poly(lactic acid) (PLA) composites. J Polym Environ 20:1052–1062. doi:10.​1007/​s10924-012-0508-4 CrossRef
Zurück zum Zitat Farah S, Anderson DG, Langer R (2016) Physical and mechanical properties of PLA, and their functions in widespread applications—a comprehensive review. Adv Drug Deliv Rev. doi:10.1016/j.addr.2016.06.012 Farah S, Anderson DG, Langer R (2016) Physical and mechanical properties of PLA, and their functions in widespread applications—a comprehensive review. Adv Drug Deliv Rev. doi:10.​1016/​j.​addr.​2016.​06.​012
Zurück zum Zitat García NL, Ribba L, Dufresne A et al (2011) Effect of glycerol on the morphology of nanocomposites made from thermoplastic starch and starch nanocrystals. Carbohydr Polym 84:203–210CrossRef García NL, Ribba L, Dufresne A et al (2011) Effect of glycerol on the morphology of nanocomposites made from thermoplastic starch and starch nanocrystals. Carbohydr Polym 84:203–210CrossRef
Zurück zum Zitat Gårdebjer S, Bergstrand A, Idström A et al (2015) Solid-state NMR to quantify surface coverage and chain length of lactic acid modified cellulose nanocrystals, used as fillers in biodegradable composites. Compos Sci Technol 107:1–9. doi:10.1016/j.compscitech.2014.11.014 CrossRef Gårdebjer S, Bergstrand A, Idström A et al (2015) Solid-state NMR to quantify surface coverage and chain length of lactic acid modified cellulose nanocrystals, used as fillers in biodegradable composites. Compos Sci Technol 107:1–9. doi:10.​1016/​j.​compscitech.​2014.​11.​014 CrossRef
Zurück zum Zitat Goffin A-L, Raquez J-M, Duquesne E et al (2011) From interfacial ring-opening polymerization to melt processing of cellulose nanowhisker-filled polylactide-based nanocomposites. Biomacromolecules 12:2456–2465. doi:10.1021/bm200581h CrossRef Goffin A-L, Raquez J-M, Duquesne E et al (2011) From interfacial ring-opening polymerization to melt processing of cellulose nanowhisker-filled polylactide-based nanocomposites. Biomacromolecules 12:2456–2465. doi:10.​1021/​bm200581h CrossRef
Zurück zum Zitat Goffin AL, Habibi Y, Raquez JM, Dubois P (2012) Polyester-grafted cellulose nanowhiskers: a new approach for tuning the microstructure of immiscible polyester blends. ACS Appl Mater Interfaces 4:3364–3371. doi:10.1021/am3008196 CrossRef Goffin AL, Habibi Y, Raquez JM, Dubois P (2012) Polyester-grafted cellulose nanowhiskers: a new approach for tuning the microstructure of immiscible polyester blends. ACS Appl Mater Interfaces 4:3364–3371. doi:10.​1021/​am3008196 CrossRef
Zurück zum Zitat Goodrich JD, Winter WT (2007) ??-Chitin nanocrystals prepared from shrimp shells and their specific surface area measurement. Biomacromolecules 8:252–257. doi:10.1021/bm0603589 CrossRef Goodrich JD, Winter WT (2007) ??-Chitin nanocrystals prepared from shrimp shells and their specific surface area measurement. Biomacromolecules 8:252–257. doi:10.​1021/​bm0603589 CrossRef
Zurück zum Zitat Gopalan Nair K, Dufresne A (2003) Crab shell chitin whisker reinforced natural rubber nanocomposites. 1. Processing and swelling behavior. Biomacromolecules 4:657–665. doi:10.1021/bm020127b CrossRef Gopalan Nair K, Dufresne A (2003) Crab shell chitin whisker reinforced natural rubber nanocomposites. 1. Processing and swelling behavior. Biomacromolecules 4:657–665. doi:10.​1021/​bm020127b CrossRef
Zurück zum Zitat Graupner N, Ziegmann G, Wilde F et al (2016) Procedural influences on compression and injection moulded cellulose fibre-reinforced polylactide (PLA) composites: influence of fibre loading, fibre length, fibre orientation and voids. Compos A Appl Sci Manuf 81:158–171. doi:10.1016/j.compositesa.2015.10.040 CrossRef Graupner N, Ziegmann G, Wilde F et al (2016) Procedural influences on compression and injection moulded cellulose fibre-reinforced polylactide (PLA) composites: influence of fibre loading, fibre length, fibre orientation and voids. Compos A Appl Sci Manuf 81:158–171. doi:10.​1016/​j.​compositesa.​2015.​10.​040 CrossRef
Zurück zum Zitat Gu H, Guo J, He Q et al (2013) Flame-retardant epoxy resin nanocomposites reinforced with polyaniline-stabilized silica nanoparticles. Ind Eng Chem Res 52:7718–7728. doi:10.1021/ie400275n CrossRef Gu H, Guo J, He Q et al (2013) Flame-retardant epoxy resin nanocomposites reinforced with polyaniline-stabilized silica nanoparticles. Ind Eng Chem Res 52:7718–7728. doi:10.​1021/​ie400275n CrossRef
Zurück zum Zitat Guan X, Zheng G, Dai K et al (2016) Carbon nanotubes-adsorbed electrospun PA66 nanofiber bundles with improved conductivity and robust flexibility. ACS Appl Mater Interfaces 8:14150–14159. doi:10.1021/acsami.6b02888 CrossRef Guan X, Zheng G, Dai K et al (2016) Carbon nanotubes-adsorbed electrospun PA66 nanofiber bundles with improved conductivity and robust flexibility. ACS Appl Mater Interfaces 8:14150–14159. doi:10.​1021/​acsami.​6b02888 CrossRef
Zurück zum Zitat Guo J, Guan L, Wei H et al (2016) Enhanced negative magnetoresistance with high sensitivity of polyaniline interfaced with nanotitania. J Electrochem Soc 163:H664–H671CrossRef Guo J, Guan L, Wei H et al (2016) Enhanced negative magnetoresistance with high sensitivity of polyaniline interfaced with nanotitania. J Electrochem Soc 163:H664–H671CrossRef
Zurück zum Zitat Habibi Y, Aouadi S, Raquez J-M, Dubois P (2013) Effects of interfacial stereocomplexation in cellulose nanocrystal-filled polylactide nanocomposites. Cellulose 20:2877–2885. doi:10.1007/s10570-013-0058-5 CrossRef Habibi Y, Aouadi S, Raquez J-M, Dubois P (2013) Effects of interfacial stereocomplexation in cellulose nanocrystal-filled polylactide nanocomposites. Cellulose 20:2877–2885. doi:10.​1007/​s10570-013-0058-5 CrossRef
Zurück zum Zitat Han J, Borjihan G, Bai R et al (2008) Synthesis and characterization of starch piperinic ester and its self-assembly of nanospheres. J Appl Polym Sci 108:523–528CrossRef Han J, Borjihan G, Bai R et al (2008) Synthesis and characterization of starch piperinic ester and its self-assembly of nanospheres. J Appl Polym Sci 108:523–528CrossRef
Zurück zum Zitat Herrera N, Salaberria AM, Mathew AP, Oksman K (2015b) Plasticized polylactic acid nanocomposite films with cellulose and chitin nanocrystals prepared using extrusion and compression molding with two cooling rates: effects on mechanical, thermal and optical properties. Compos A Appl Sci Manuf. doi:10.1016/j.compositesa.2015.05.024 Herrera N, Salaberria AM, Mathew AP, Oksman K (2015b) Plasticized polylactic acid nanocomposite films with cellulose and chitin nanocrystals prepared using extrusion and compression molding with two cooling rates: effects on mechanical, thermal and optical properties. Compos A Appl Sci Manuf. doi:10.​1016/​j.​compositesa.​2015.​05.​024
Zurück zum Zitat Hong J, Kim DS (2013) Preparation and physical properties of polylactide/cellulose nanowhisker/nanoclay composites. Polym Compos 34:293–298CrossRef Hong J, Kim DS (2013) Preparation and physical properties of polylactide/cellulose nanowhisker/nanoclay composites. Polym Compos 34:293–298CrossRef
Zurück zum Zitat Hossain KMZ, Ahmed I, Parsons AJ et al (2012) Physico-chemical and mechanical properties of nanocomposites prepared using cellulose nanowhiskers and poly(lactic acid). J Mater Sci 47:2675–2686. doi:10.1007/s10853-011-6093-4 CrossRef Hossain KMZ, Ahmed I, Parsons AJ et al (2012) Physico-chemical and mechanical properties of nanocomposites prepared using cellulose nanowhiskers and poly(lactic acid). J Mater Sci 47:2675–2686. doi:10.​1007/​s10853-011-6093-4 CrossRef
Zurück zum Zitat Hu F, Fu S, Huang J et al (2014) Structure and properties of polysaccharide nanocrystals. In: Huang J, Chang RP, Lin N, Dufresne A (eds) Polysaccharide-based nanocrystals chemistry and applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 15–62 Hu F, Fu S, Huang J et al (2014) Structure and properties of polysaccharide nanocrystals. In: Huang J, Chang RP, Lin N, Dufresne A (eds) Polysaccharide-based nanocrystals chemistry and applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 15–62
Zurück zum Zitat Hua S, Chen F, Liu Z-Y et al (2016) Preparation of cellulose-graft-polylactic acid via melt copolycondensation for use in polylactic acid based composites: synthesis, characterization and properties. RSC Adv 6:1973–1983. doi:10.1039/c5ra23182e CrossRef Hua S, Chen F, Liu Z-Y et al (2016) Preparation of cellulose-graft-polylactic acid via melt copolycondensation for use in polylactic acid based composites: synthesis, characterization and properties. RSC Adv 6:1973–1983. doi:10.​1039/​c5ra23182e CrossRef
Zurück zum Zitat Inkinen S, Hakkarainen M, Albertsson AC, Södergård A (2011) From lactic acid to poly(lactic acid) (PLA): characterization and analysis of PLA and its precursors. Biomacromolecules 12:523–532. doi:10.1021/bm101302t CrossRef Inkinen S, Hakkarainen M, Albertsson AC, Södergård A (2011) From lactic acid to poly(lactic acid) (PLA): characterization and analysis of PLA and its precursors. Biomacromolecules 12:523–532. doi:10.​1021/​bm101302t CrossRef
Zurück zum Zitat Jonoobi M, Mathew AP, Abdi MM et al (2012) A comparison of modified and unmodified cellulose nanofiber reinforced polylactic acid (PLA) prepared by twin screw extrusion. J Polym Environ 20:991–997. doi:10.1007/s10924-012-0503-9 CrossRef Jonoobi M, Mathew AP, Abdi MM et al (2012) A comparison of modified and unmodified cellulose nanofiber reinforced polylactic acid (PLA) prepared by twin screw extrusion. J Polym Environ 20:991–997. doi:10.​1007/​s10924-012-0503-9 CrossRef
Zurück zum Zitat Kamal MR, Khoshkava V (2015) Effect of cellulose nanocrystals (CNC) on rheological and mechanical properties and crystallization behavior of PLA/CNC nanocomposites. Carbohydr Polym 123:105–114CrossRef Kamal MR, Khoshkava V (2015) Effect of cellulose nanocrystals (CNC) on rheological and mechanical properties and crystallization behavior of PLA/CNC nanocomposites. Carbohydr Polym 123:105–114CrossRef
Zurück zum Zitat Kang S, Pinault M, Pfefferle LD et al (2007) Single-Walled Carbon Nanotubes Exhibit Strong Antimicrobial Activity. Langmuir 23(17):8670–8673CrossRef Kang S, Pinault M, Pfefferle LD et al (2007) Single-Walled Carbon Nanotubes Exhibit Strong Antimicrobial Activity. Langmuir 23(17):8670–8673CrossRef
Zurück zum Zitat Kargarzadeh H, Ahmad I (2015) Polysaccharide Nanocrystal-Reinforced Nanocomposites. In: Huang J, Chang PR, Lin N, Dufresne A (eds) Polysaccharide-Based Nanocrystals Chemistry and Applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 165–218 Kargarzadeh H, Ahmad I (2015) Polysaccharide Nanocrystal-Reinforced Nanocomposites. In: Huang J, Chang PR, Lin N, Dufresne A (eds) Polysaccharide-Based Nanocrystals Chemistry and Applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 165–218
Zurück zum Zitat Khoshkava V, Kamal MR (2013) Effect of surface engery on dispersion and mechanical properties of polymer/nano-crystalline cellulose nano-composites—supporting information. Biomacromolecules 14:3155–3163. doi:10.1021/bm400784j CrossRef Khoshkava V, Kamal MR (2013) Effect of surface engery on dispersion and mechanical properties of polymer/nano-crystalline cellulose nano-composites—supporting information. Biomacromolecules 14:3155–3163. doi:10.​1021/​bm400784j CrossRef
Zurück zum Zitat Kim J-Y, Lim S-T (2009) Preparation of nano-sized starch particles by complex formation with n-butanol. Carbohydr Polym 76:110–116CrossRef Kim J-Y, Lim S-T (2009) Preparation of nano-sized starch particles by complex formation with n-butanol. Carbohydr Polym 76:110–116CrossRef
Zurück zum Zitat Kose R, Kondo T (2013) Size effects of cellulose nanofibers for enhancing the crystallization of poly(lactic acid). J Appl Polym Sci 128:1200–1205. doi:10.1002/app.38308 CrossRef Kose R, Kondo T (2013) Size effects of cellulose nanofibers for enhancing the crystallization of poly(lactic acid). J Appl Polym Sci 128:1200–1205. doi:10.​1002/​app.​38308 CrossRef
Zurück zum Zitat Kotchey GP, Hasan SA, Kapralov AA et al (2012) A Natural Vanishing Act : The Enzyme-Catalyzed Degradation of Carbon Nanomaterials. 45:1770–1781. doi:10.1021/ar300106h Kotchey GP, Hasan SA, Kapralov AA et al (2012) A Natural Vanishing Act : The Enzyme-Catalyzed Degradation of Carbon Nanomaterials. 45:1770–1781. doi:10.​1021/​ar300106h
Zurück zum Zitat Lagarón J-M (2011) Polylactic acid (PLA) nanocomposites for food packaging applications. In: Lagarón J-M (ed) Multifunctional and Nanoreinforced Polymers for Food Packaging. Woodhead Publishing, Sawston, pp 485–497 Lagarón J-M (2011) Polylactic acid (PLA) nanocomposites for food packaging applications. In: Lagarón J-M (ed) Multifunctional and Nanoreinforced Polymers for Food Packaging. Woodhead Publishing, Sawston, pp 485–497
Zurück zum Zitat Larsson K, Berglund LA, Ankerfors M, Lindström T (2012) Polylactide latex/nanofibrillated cellulose bionanocomposites of high nanofibrillated cellulose content and nanopaper network structure prepared by a papermaking route. J Appl Polym Sci 125:2460–2466CrossRef Larsson K, Berglund LA, Ankerfors M, Lindström T (2012) Polylactide latex/nanofibrillated cellulose bionanocomposites of high nanofibrillated cellulose content and nanopaper network structure prepared by a papermaking route. J Appl Polym Sci 125:2460–2466CrossRef
Zurück zum Zitat Le Corre D, Dufresne A (2013) Preparation of Starch Nanoparticles. In: Biopolymer Nanocomposites: Processing, Properties, and Applications. pp 153–180 Le Corre D, Dufresne A (2013) Preparation of Starch Nanoparticles. In: Biopolymer Nanocomposites: Processing, Properties, and Applications. pp 153–180
Zurück zum Zitat Lee JH, Park SH, Kim SH (2014) Surface modification of cellulose nanowhiskers and their reinforcing effect in polylactide. Macromol Res 22:424–430CrossRef Lee JH, Park SH, Kim SH (2014) Surface modification of cellulose nanowhiskers and their reinforcing effect in polylactide. Macromol Res 22:424–430CrossRef
Zurück zum Zitat Lin Y, Shen HM, Xu ZL (2009) PVDF–TiO2 composite hollow fiber ultrafiltration membranes prepared by TiO2 sol–gel method and blending method. J Appl Phys 113:1763–1772. doi:10.1002/app Lin Y, Shen HM, Xu ZL (2009) PVDF–TiO2 composite hollow fiber ultrafiltration membranes prepared by TiO2 sol–gel method and blending method. J Appl Phys 113:1763–1772. doi:10.​1002/​app
Zurück zum Zitat Liu H, Gao J, Huang W et al (2016a) Electrically conductive strain sensing polyurethane nanocomposites with synergistic carbon nanotubes and graphene bifillers. Nanoscale 8:12977–12989. doi:10.1039/C6NR02216B CrossRef Liu H, Gao J, Huang W et al (2016a) Electrically conductive strain sensing polyurethane nanocomposites with synergistic carbon nanotubes and graphene bifillers. Nanoscale 8:12977–12989. doi:10.​1039/​C6NR02216B CrossRef
Zurück zum Zitat Liu H, Liu W, Luo B et al (2016b) Electrospun composite nanofiber membrane of poly(l-lactide) and surface grafted chitin whiskers: fabrication, mechanical properties and cytocompatibility. Carbohydr Polym 147:216–225. doi:10.1016/j.carbpol.2016.03.096 CrossRef Liu H, Liu W, Luo B et al (2016b) Electrospun composite nanofiber membrane of poly(l-lactide) and surface grafted chitin whiskers: fabrication, mechanical properties and cytocompatibility. Carbohydr Polym 147:216–225. doi:10.​1016/​j.​carbpol.​2016.​03.​096 CrossRef
Zurück zum Zitat Liu S, Zeng TH, Hofmann M et al (2011) Antibacterial Activity of Graphite, Graphite Oxide, Graphene Oxide, and Reduced Graphene Oxide : Membrane and Oxidative Stress. 6971–6980 Liu S, Zeng TH, Hofmann M et al (2011) Antibacterial Activity of Graphite, Graphite Oxide, Graphene Oxide, and Reduced Graphene Oxide : Membrane and Oxidative Stress. 6971–6980
Zurück zum Zitat Lu F, Yu H, Yan C, Yao J (2016) Polylactic acid nanocomposite films with spherical nanocelluloses as efficient nucleation agents: effects on crystallization, mechanical and thermal properties. RSC Adv 6:46008–46018CrossRef Lu F, Yu H, Yan C, Yao J (2016) Polylactic acid nanocomposite films with spherical nanocelluloses as efficient nucleation agents: effects on crystallization, mechanical and thermal properties. RSC Adv 6:46008–46018CrossRef
Zurück zum Zitat Ma X, Jian R, Chang PR, Yu J (2008) Fabrication and characterization of citric acid-modified starch nanoparticles/plasticized-starch composites. Biomacromolecules 9:3314–3320. doi:10.1021/bm800987c CrossRef Ma X, Jian R, Chang PR, Yu J (2008) Fabrication and characterization of citric acid-modified starch nanoparticles/plasticized-starch composites. Biomacromolecules 9:3314–3320. doi:10.​1021/​bm800987c CrossRef
Zurück zum Zitat Maio A, Botta L, Tito AC et al (2014) Statistical study of the influence of CNTs purification and plasma functionalization on the properties of polycarbonate-CNTs nanocomposites. Plasma Process Polym 11:664–677. doi:10.1002/ppap.201400008 CrossRef Maio A, Botta L, Tito AC et al (2014) Statistical study of the influence of CNTs purification and plasma functionalization on the properties of polycarbonate-CNTs nanocomposites. Plasma Process Polym 11:664–677. doi:10.​1002/​ppap.​201400008 CrossRef
Zurück zum Zitat Maio A, Agnello S, Khatibi R et al (2016a) A rapid and eco-friendly route to synthesize graphene-doped silica nanohybrids. J Alloys Compd 664:428–438CrossRef Maio A, Agnello S, Khatibi R et al (2016a) A rapid and eco-friendly route to synthesize graphene-doped silica nanohybrids. J Alloys Compd 664:428–438CrossRef
Zurück zum Zitat Maio A, Giallombardo D, Scaffaro R et al (2016b) Synthesis of a fluorinated graphene oxide-silica nanohybrid: improving oxygen affinity. RSC Adv 6:46037–46047. doi:10.1039/C6RA02585D CrossRef Maio A, Giallombardo D, Scaffaro R et al (2016b) Synthesis of a fluorinated graphene oxide-silica nanohybrid: improving oxygen affinity. RSC Adv 6:46037–46047. doi:10.​1039/​C6RA02585D CrossRef
Zurück zum Zitat Martínez-Sanz M, Lopez-Rubio A, Lagaron JM (2012) Optimization of the dispersion of unmodified bacterial cellulose nanowhiskers into polylactide via melt compounding to significantly enhance barrier and mechanical properties. Biomacromolecules 13:3887–3899. doi:10.1021/bm301430j CrossRef Martínez-Sanz M, Lopez-Rubio A, Lagaron JM (2012) Optimization of the dispersion of unmodified bacterial cellulose nanowhiskers into polylactide via melt compounding to significantly enhance barrier and mechanical properties. Biomacromolecules 13:3887–3899. doi:10.​1021/​bm301430j CrossRef
Zurück zum Zitat Martínez-Sanz M, Abdelwahab MA, Lopez-Rubio A et al (2013) Incorporation of poly(glycidylmethacrylate) grafted bacterial cellulose nanowhiskers in poly(lactic acid) nanocomposites: improved barrier and mechanical properties. Eur Polym J 49:2062–2072. doi:10.1016/j.eurpolymj.2013.04.035 CrossRef Martínez-Sanz M, Abdelwahab MA, Lopez-Rubio A et al (2013) Incorporation of poly(glycidylmethacrylate) grafted bacterial cellulose nanowhiskers in poly(lactic acid) nanocomposites: improved barrier and mechanical properties. Eur Polym J 49:2062–2072. doi:10.​1016/​j.​eurpolymj.​2013.​04.​035 CrossRef
Zurück zum Zitat Mary KS, Pothan LA, Thomas S (2013) Applications of starch nanoparticles and starch-based bionanocomposites. In: Dufresne A, Thomas S, Pothen LA (eds) Biopolymer nanocomposites: Processing, properties and applications. Wiley, New York, pp 293–308CrossRef Mary KS, Pothan LA, Thomas S (2013) Applications of starch nanoparticles and starch-based bionanocomposites. In: Dufresne A, Thomas S, Pothen LA (eds) Biopolymer nanocomposites: Processing, properties and applications. Wiley, New York, pp 293–308CrossRef
Zurück zum Zitat Mathew AP, Dufresne A (2002) Morphological investigation of nanocomposites from sorbitol plasticized starch and tunicin whiskers. Biomacromolecules 3:609–617. doi:10.1021/bm0101769 CrossRef Mathew AP, Dufresne A (2002) Morphological investigation of nanocomposites from sorbitol plasticized starch and tunicin whiskers. Biomacromolecules 3:609–617. doi:10.​1021/​bm0101769 CrossRef
Zurück zum Zitat Morán JI, Ludueña LN, Alvarez VA (2014) Recent advances in nanocomposites based on biodegradable polymers and nanocellulose. Nanocellul Polym Nanocompos. Wiley, Hoboken, pp 237–254 Morán JI, Ludueña LN, Alvarez VA (2014) Recent advances in nanocomposites based on biodegradable polymers and nanocellulose. Nanocellul Polym Nanocompos. Wiley, Hoboken, pp 237–254
Zurück zum Zitat Mukherjee T, Kao N, Gupta RK et al (2016) Evaluating the state of dispersion on cellulosic biopolymer by rheology. J Appl Polym Sci. doi:10.1002/app.43200 Mukherjee T, Kao N, Gupta RK et al (2016) Evaluating the state of dispersion on cellulosic biopolymer by rheology. J Appl Polym Sci. doi:10.​1002/​app.​43200
Zurück zum Zitat Myoung SH, Im SS, Kim SH (2016) Non-isothermal crystallization behavior of PLA/acetylated cellulose nanocrystal/silica nanocomposites. Polym Int 65:115–124. doi:10.1002/pi.5038 CrossRef Myoung SH, Im SS, Kim SH (2016) Non-isothermal crystallization behavior of PLA/acetylated cellulose nanocrystal/silica nanocomposites. Polym Int 65:115–124. doi:10.​1002/​pi.​5038 CrossRef
Zurück zum Zitat Nitya G, Nair GT, Mony U et al (2012) In vitro evaluation of electrospun PCL/nanoclay composite scaffold for bone tissue engineering. J Mater Sci Mater Med 23:1749–1761CrossRef Nitya G, Nair GT, Mony U et al (2012) In vitro evaluation of electrospun PCL/nanoclay composite scaffold for bone tissue engineering. J Mater Sci Mater Med 23:1749–1761CrossRef
Zurück zum Zitat Peltzer M, Pei A, Zhou Q et al (2014) Surface modification of cellulose nanocrystals by grafting with poly(lactic acid). Polym Int 63:1056–1062. doi:10.1002/pi.4610 CrossRef Peltzer M, Pei A, Zhou Q et al (2014) Surface modification of cellulose nanocrystals by grafting with poly(lactic acid). Polym Int 63:1056–1062. doi:10.​1002/​pi.​4610 CrossRef
Zurück zum Zitat Persenaire O, Vincente RQ, Bonnaud L et al (2016) Water-dispersive PLA-based materials: from reactive melt processing to properties. Polym Adv Technol 27:61–65. doi:10.1002/pat.3597 CrossRef Persenaire O, Vincente RQ, Bonnaud L et al (2016) Water-dispersive PLA-based materials: from reactive melt processing to properties. Polym Adv Technol 27:61–65. doi:10.​1002/​pat.​3597 CrossRef
Zurück zum Zitat Pirani S, Abushammala HMN, Hashaikeh R (2013) Preparation and characterization of electrospun PLA/nanocrystalline cellulose-based composites. J Appl Polym Sci 130:3345–3354. doi:10.1002/app.39576 CrossRef Pirani S, Abushammala HMN, Hashaikeh R (2013) Preparation and characterization of electrospun PLA/nanocrystalline cellulose-based composites. J Appl Polym Sci 130:3345–3354. doi:10.​1002/​app.​39576 CrossRef
Zurück zum Zitat Pracella M, Haque MM-U, Puglia D (2014) Morphology and properties tuning of PLA/cellulose nanocrystals bio-nanocomposites by means of reactive functionalization and blending with PVAc. Polym (Guildf) 55:3720–3728. doi:10.1016/j.polymer.2014.06.071 CrossRef Pracella M, Haque MM-U, Puglia D (2014) Morphology and properties tuning of PLA/cellulose nanocrystals bio-nanocomposites by means of reactive functionalization and blending with PVAc. Polym (Guildf) 55:3720–3728. doi:10.​1016/​j.​polymer.​2014.​06.​071 CrossRef
Zurück zum Zitat Putaux JL, Molina-Boisseau S, Momaur T, Dufresne A (2003) Platelet nanocrystals resulting from the disruption of waxy maize starch granules by acid hydrolysis. Biomacromolecules 4:1198–1202. doi:10.1021/bm0340422 CrossRef Putaux JL, Molina-Boisseau S, Momaur T, Dufresne A (2003) Platelet nanocrystals resulting from the disruption of waxy maize starch granules by acid hydrolysis. Biomacromolecules 4:1198–1202. doi:10.​1021/​bm0340422 CrossRef
Zurück zum Zitat Qu P, Zhou Y, Zhang X et al (2012) Surface modification of cellulose nanofibrils for poly (lactic acid) composite application. J Appl Polym Sci 125:3084–3091CrossRef Qu P, Zhou Y, Zhang X et al (2012) Surface modification of cellulose nanofibrils for poly (lactic acid) composite application. J Appl Polym Sci 125:3084–3091CrossRef
Zurück zum Zitat Salmieri S, Islam F, Khan RA et al (2014) Antimicrobial nanocomposite films made of poly(lactic acid)–cellulose nanocrystals (PLA–CNC) in food applications—part B: effect of oregano essential oil release on the inactivation of Listeria monocytogenes in mixed vegetables. Cellulose 21:4271–4285. doi:10.1007/s10570-014-0406-0 CrossRef Salmieri S, Islam F, Khan RA et al (2014) Antimicrobial nanocomposite films made of poly(lactic acid)–cellulose nanocrystals (PLA–CNC) in food applications—part B: effect of oregano essential oil release on the inactivation of Listeria monocytogenes in mixed vegetables. Cellulose 21:4271–4285. doi:10.​1007/​s10570-014-0406-0 CrossRef
Zurück zum Zitat Sanchez-Garcia MD, Lagaron JM (2010) On the use of plant cellulose nanowhiskers to enhance the barrier properties of polylactic acid. Cellulose 17:987–1004CrossRef Sanchez-Garcia MD, Lagaron JM (2010) On the use of plant cellulose nanowhiskers to enhance the barrier properties of polylactic acid. Cellulose 17:987–1004CrossRef
Zurück zum Zitat Scaffaro R, Botta L, La Mantia FP (2009) Preparation and characterization of polyolefin- based nanocomposite blown films for agricultural applications. Macromol Mater Eng 294:445–454. doi:10.1002/mame.200900004 CrossRef Scaffaro R, Botta L, La Mantia FP (2009) Preparation and characterization of polyolefin- based nanocomposite blown films for agricultural applications. Macromol Mater Eng 294:445–454. doi:10.​1002/​mame.​200900004 CrossRef
Zurück zum Zitat Scaffaro R, Botta L, Ceraulo M, La Mantia FP (2011a) Effect of kind and content of organo-modified clay on properties of PET nanocomposites. J Appl Polym Sci 122:384–392. doi:10.1002/app.34087 CrossRef Scaffaro R, Botta L, Ceraulo M, La Mantia FP (2011a) Effect of kind and content of organo-modified clay on properties of PET nanocomposites. J Appl Polym Sci 122:384–392. doi:10.​1002/​app.​34087 CrossRef
Zurück zum Zitat Scaffaro R, Botta L, Lo Re G et al (2011b) Surface modification of poly(ethylene-co-acrylic acid) with amino-functionalized silica nanoparticles. J Mater Chem 21:3849–3857. doi:10.1039/c0jm03310c CrossRef Scaffaro R, Botta L, Lo Re G et al (2011b) Surface modification of poly(ethylene-co-acrylic acid) with amino-functionalized silica nanoparticles. J Mater Chem 21:3849–3857. doi:10.​1039/​c0jm03310c CrossRef
Zurück zum Zitat Scaffaro R, Botta L, Sanfilippo M et al (2013c) Combining in the melt physical and biological properties of poly(caprolactone) and chlorhexidine to obtain antimicrobial surgical monofilaments. Appl Microbiol Biotechnol 97:99–109. doi:10.1007/s00253-012-4283-x CrossRef Scaffaro R, Botta L, Sanfilippo M et al (2013c) Combining in the melt physical and biological properties of poly(caprolactone) and chlorhexidine to obtain antimicrobial surgical monofilaments. Appl Microbiol Biotechnol 97:99–109. doi:10.​1007/​s00253-012-4283-x CrossRef
Zurück zum Zitat Scaffaro R, Botta L, Passaglia E et al (2014) Comparison of different processing methods to prepare poly(lactid acid)-hydrotalcite composites. Polym Eng Sci 54:1804–1810. doi:10.1002/pen.23724 CrossRef Scaffaro R, Botta L, Passaglia E et al (2014) Comparison of different processing methods to prepare poly(lactid acid)-hydrotalcite composites. Polym Eng Sci 54:1804–1810. doi:10.​1002/​pen.​23724 CrossRef
Zurück zum Zitat Scaffaro R, Botta L, Gallo G, Puglia AM (2015) Influence of drawing on the antimicrobial and physical properties of chlorhexidine-compounded poly(caprolactone) monofilaments. Macromol Mater Eng 12:1268–1277. doi:10.1002/mame.201500121 CrossRef Scaffaro R, Botta L, Gallo G, Puglia AM (2015) Influence of drawing on the antimicrobial and physical properties of chlorhexidine-compounded poly(caprolactone) monofilaments. Macromol Mater Eng 12:1268–1277. doi:10.​1002/​mame.​201500121 CrossRef
Zurück zum Zitat Scaffaro R, Lopresti F, Botta L et al (2016a) Melt processed PCL/PEG scaffold with discrete pore size gradient for selective cellular infiltration. Macromol Mater Eng 301:182–190. doi:10.1002/mame.201500289 CrossRef Scaffaro R, Lopresti F, Botta L et al (2016a) Melt processed PCL/PEG scaffold with discrete pore size gradient for selective cellular infiltration. Macromol Mater Eng 301:182–190. doi:10.​1002/​mame.​201500289 CrossRef
Zurück zum Zitat Scaffaro R, Lopresti F, Botta L et al (2016c) Preparation of three-layered porous PLA/PEG scaffold: relationship between morphology, mechanical behavior and cell permeability. J Mech Behav Biomed Mater 54:8–20. doi:10.1016/j.jmbbm.2015.08.033 CrossRef Scaffaro R, Lopresti F, Botta L et al (2016c) Preparation of three-layered porous PLA/PEG scaffold: relationship between morphology, mechanical behavior and cell permeability. J Mech Behav Biomed Mater 54:8–20. doi:10.​1016/​j.​jmbbm.​2015.​08.​033 CrossRef
Zurück zum Zitat Scaffaro R, Lopresti F, Botta L et al (2016d) A facile and eco-friendly route to fabricate poly(lactic acid) scaffolds with graded pore size. J Vis Exp. doi:10.3791/54595 Scaffaro R, Lopresti F, Botta L et al (2016d) A facile and eco-friendly route to fabricate poly(lactic acid) scaffolds with graded pore size. J Vis Exp. doi:10.​3791/​54595
Zurück zum Zitat Scaffaro R, Lopresti F, Sutera A et al (2016f) Effect of PCL/PEG-based membranes on actinorhodin production in Streptomyces coelicolor cultivations. Macromol Biosci 16:686–693. doi:10.1002/mabi.201500391 CrossRef Scaffaro R, Lopresti F, Sutera A et al (2016f) Effect of PCL/PEG-based membranes on actinorhodin production in Streptomyces coelicolor cultivations. Macromol Biosci 16:686–693. doi:10.​1002/​mabi.​201500391 CrossRef
Zurück zum Zitat Scaffaro R, Maio A, Agnello S, Glisenti A (2012) Plasma functionalization of multiwalled carbon nanotubes and their use in the preparation of nylon 6-based nanohybrids. Plasma Process Polym 9:503–512. doi:10.1002/ppap.201100140 CrossRef Scaffaro R, Maio A, Agnello S, Glisenti A (2012) Plasma functionalization of multiwalled carbon nanotubes and their use in the preparation of nylon 6-based nanohybrids. Plasma Process Polym 9:503–512. doi:10.​1002/​ppap.​201100140 CrossRef
Zurück zum Zitat Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425–432CrossRef Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425–432CrossRef
Zurück zum Zitat Siqueira G, Bras J, Dufresne A (2010) New process of chemical grafting of cellulose nanoparticles with a long chain isocyanate. Langmuir 26:402–411. doi:10.1021/la9028595 CrossRef Siqueira G, Bras J, Dufresne A (2010) New process of chemical grafting of cellulose nanoparticles with a long chain isocyanate. Langmuir 26:402–411. doi:10.​1021/​la9028595 CrossRef
Zurück zum Zitat Smith RJ, Whistler RL, Paschall EF (1967) Starch chemistry and technology. Academic Press, New York Smith RJ, Whistler RL, Paschall EF (1967) Starch chemistry and technology. Academic Press, New York
Zurück zum Zitat Spinella S, Lo Re G, Liu B et al (2015) Polylactide/cellulose nanocrystal nanocomposites: efficient routes for nanofiber modification and effects of nanofiber chemistry on PLA reinforcement. Polym (Guildf) 65:9–17. doi:10.1016/j.polymer.2015.02.048 CrossRef Spinella S, Lo Re G, Liu B et al (2015) Polylactide/cellulose nanocrystal nanocomposites: efficient routes for nanofiber modification and effects of nanofiber chemistry on PLA reinforcement. Polym (Guildf) 65:9–17. doi:10.​1016/​j.​polymer.​2015.​02.​048 CrossRef
Zurück zum Zitat Suryanegara L, Nakagaito AN, Yano H (2010) Thermo-mechanical properties of microfibrillated cellulose-reinforced partially crystallized PLA composites. Cellulose 17:771–778. doi:10.1007/s10570-010-9419-5 CrossRef Suryanegara L, Nakagaito AN, Yano H (2010) Thermo-mechanical properties of microfibrillated cellulose-reinforced partially crystallized PLA composites. Cellulose 17:771–778. doi:10.​1007/​s10570-010-9419-5 CrossRef
Zurück zum Zitat Takagi H (2014) Fabrication and Evaluation of Cellulose-Nanofiber-Reinforced Green Composites. In: Hinestroza JP, Netravali AN (eds) Cellulose Based Composites: Cellulose Based Composites. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 27–42CrossRef Takagi H (2014) Fabrication and Evaluation of Cellulose-Nanofiber-Reinforced Green Composites. In: Hinestroza JP, Netravali AN (eds) Cellulose Based Composites: Cellulose Based Composites. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 27–42CrossRef
Zurück zum Zitat Thakur VK, Thakur MK (2014) Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustain Chem Eng 2:2637–2652. doi:10.1021/sc500634p CrossRef Thakur VK, Thakur MK (2014) Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustain Chem Eng 2:2637–2652. doi:10.​1021/​sc500634p CrossRef
Zurück zum Zitat Thakur VK, Singha AS, Thakur MK (2013b) Synthesis of natural cellulose–based graft copolymers using methyl methacrylate as an efficient monomer. Adv Polym Technol 32:E741–E748CrossRef Thakur VK, Singha AS, Thakur MK (2013b) Synthesis of natural cellulose–based graft copolymers using methyl methacrylate as an efficient monomer. Adv Polym Technol 32:E741–E748CrossRef
Zurück zum Zitat Thakur VK, Singha AS, Thakur MK (2013c) Natural cellulosic polymers as potential reinforcement in composites: physicochemical and mechanical studies. Adv Polym Technol 32:E427–E435CrossRef Thakur VK, Singha AS, Thakur MK (2013c) Natural cellulosic polymers as potential reinforcement in composites: physicochemical and mechanical studies. Adv Polym Technol 32:E427–E435CrossRef
Zurück zum Zitat Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014d) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2:1072–1092. doi:10.1021/sc500087z CrossRef Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014d) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2:1072–1092. doi:10.​1021/​sc500087z CrossRef
Zurück zum Zitat Trifol J, Plackett D, Sillard C et al (2016a) A comparison of partially acetylated nanocellulose, nanocrystalline cellulose, and nanoclay as fillers for high-performance polylactide nanocomposites. J Appl Polym Sci. doi:10.1002/app.43257 Trifol J, Plackett D, Sillard C et al (2016a) A comparison of partially acetylated nanocellulose, nanocrystalline cellulose, and nanoclay as fillers for high-performance polylactide nanocomposites. J Appl Polym Sci. doi:10.​1002/​app.​43257
Zurück zum Zitat Trifol J, Plackett D, Sillard C et al (2016b) Hybrid poly(lactic acid)/nanocellulose/nanoclay composites with synergistically enhanced barrier properties and improved thermomechanical resistance. Polym Int. doi:10.1002/pi.5154 Trifol J, Plackett D, Sillard C et al (2016b) Hybrid poly(lactic acid)/nanocellulose/nanoclay composites with synergistically enhanced barrier properties and improved thermomechanical resistance. Polym Int. doi:10.​1002/​pi.​5154
Zurück zum Zitat Wang T, Drzal LT (2012) Cellulose-nanofiber-reinforced poly(lactic acid) composites prepared by a water-based approach. ACS Appl Mater Interfaces 4:5079–5085. doi:10.1021/am301438g CrossRef Wang T, Drzal LT (2012) Cellulose-nanofiber-reinforced poly(lactic acid) composites prepared by a water-based approach. ACS Appl Mater Interfaces 4:5079–5085. doi:10.​1021/​am301438g CrossRef
Zurück zum Zitat Wang J, Mao Q (2012) Methodology based on the PVT behavior of polymer for injection molding. Adv Polym Technol 32:474–485. doi:10.1002/adv CrossRef Wang J, Mao Q (2012) Methodology based on the PVT behavior of polymer for injection molding. Adv Polym Technol 32:474–485. doi:10.​1002/​adv CrossRef
Zurück zum Zitat Wojtoniszak M, Chen X, Kalenczuk RJ et al (2012) Colloids and Surfaces B : Biointerfaces Synthesis, dispersion, and cytocompatibility of graphene oxide and reduced graphene oxide. Colloids Surfaces B Biointerfaces 89:79–85. doi:10.1016/j.colsurfb.2011.08.026 CrossRef Wojtoniszak M, Chen X, Kalenczuk RJ et al (2012) Colloids and Surfaces B : Biointerfaces Synthesis, dispersion, and cytocompatibility of graphene oxide and reduced graphene oxide. Colloids Surfaces B Biointerfaces 89:79–85. doi:10.​1016/​j.​colsurfb.​2011.​08.​026 CrossRef
Zurück zum Zitat Wolf RA, Girouard N, Xu S et al (2013) Adhesion improvements of nanocellulose composite interfaces. Plast Eng 69:32–37 Wolf RA, Girouard N, Xu S et al (2013) Adhesion improvements of nanocellulose composite interfaces. Plast Eng 69:32–37
Zurück zum Zitat Xiang C, Taylor AG, Hinestroza JP, Frey MW (2013) Controlled release of nonionic compounds from poly(lactic acid)/cellulose nanocrystal nanocomposite fibers. J Appl Polym Sci 127:79–86. doi:10.1002/app.36943 CrossRef Xiang C, Taylor AG, Hinestroza JP, Frey MW (2013) Controlled release of nonionic compounds from poly(lactic acid)/cellulose nanocrystal nanocomposite fibers. J Appl Polym Sci 127:79–86. doi:10.​1002/​app.​36943 CrossRef
Zurück zum Zitat Yamamoto Y, Nishimura T, Saito T, Kato T (2010) CaCO3/chitin-whisker hybrids: formation of CaCO3 crystals in chitin-based liquid-crystalline suspension. Polym J 42:583–586. doi:10.1038/pj.2010.32 CrossRef Yamamoto Y, Nishimura T, Saito T, Kato T (2010) CaCO3/chitin-whisker hybrids: formation of CaCO3 crystals in chitin-based liquid-crystalline suspension. Polym J 42:583–586. doi:10.​1038/​pj.​2010.​32 CrossRef
Zurück zum Zitat Yang X, Zhu J, Qiu L, Li D (2011) Bioinspired Effective Prevention of Restacking in Multilayered Graphene Films : Towards the Next Generation of High-Performance Supercapacitors. 2833–2838. doi:10.1002/adma.201100261 Yang X, Zhu J, Qiu L, Li D (2011) Bioinspired Effective Prevention of Restacking in Multilayered Graphene Films : Towards the Next Generation of High-Performance Supercapacitors. 2833–2838. doi:10.​1002/​adma.​201100261
Zurück zum Zitat Yin Z, Zeng J, Wang C, Pan Z (2015) Preparation and Properties of Cross-Linked Starch Nanocrystals / Polylactic Acid Nanocomposites. Int J Polym Sci 2015:454708. doi: 10.1155/2015/454708 CrossRef Yin Z, Zeng J, Wang C, Pan Z (2015) Preparation and Properties of Cross-Linked Starch Nanocrystals / Polylactic Acid Nanocomposites. Int J Polym Sci 2015:454708. doi: 10.​1155/​2015/​454708 CrossRef
Zurück zum Zitat Yu M, Lourie O, Dyer MJ et al (2000) Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load. 287:637–641 Yu M, Lourie O, Dyer MJ et al (2000) Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load. 287:637–641
Zurück zum Zitat Yu J, Ai F, Dufresne A et al (2008) Structure and mechanical properties of poly(lactic acid) filled with (starch nanocrystal)-graft-poly(ε-caprolactone). Macromol Mater Eng 293:763–770. doi:10.1002/mame.200800134 CrossRef Yu J, Ai F, Dufresne A et al (2008) Structure and mechanical properties of poly(lactic acid) filled with (starch nanocrystal)-graft-poly(ε-caprolactone). Macromol Mater Eng 293:763–770. doi:10.​1002/​mame.​200800134 CrossRef
Zurück zum Zitat Zeng X, Deng L, Yao Y et al (2016) Flexible dielectric papers based on biodegradable cellulose nanofibers and carbon nanotubes for dielectric energy storage. J Mater Chem C 4:6037–6044. doi:10.1039/c6tc01501h CrossRef Zeng X, Deng L, Yao Y et al (2016) Flexible dielectric papers based on biodegradable cellulose nanofibers and carbon nanotubes for dielectric energy storage. J Mater Chem C 4:6037–6044. doi:10.​1039/​c6tc01501h CrossRef
Zurück zum Zitat Zhang Q, Wei S, Huang J et al (2014) Effect of surface acetylated-chitin nanocrystals on structure and mechanical properties of poly(lactic acid). J Appl Polym Sci 131:1–8. doi:10.1002/app.39809 Zhang Q, Wei S, Huang J et al (2014) Effect of surface acetylated-chitin nanocrystals on structure and mechanical properties of poly(lactic acid). J Appl Polym Sci 131:1–8. doi:10.​1002/​app.​39809
Zurück zum Zitat Zhang C, Salick MR, Cordie TM et al (2015) Incorporation of poly(ethylene glycol) grafted cellulose nanocrystals in poly(lactic acid) electrospun nanocomposite fibers as potential scaffolds for bone tissue engineering. Mater Sci Eng C 49:463–471. doi:10.1016/j.msec.2015.01.024 CrossRef Zhang C, Salick MR, Cordie TM et al (2015) Incorporation of poly(ethylene glycol) grafted cellulose nanocrystals in poly(lactic acid) electrospun nanocomposite fibers as potential scaffolds for bone tissue engineering. Mater Sci Eng C 49:463–471. doi:10.​1016/​j.​msec.​2015.​01.​024 CrossRef
Zurück zum Zitat Zheng H, Ai F, Chang PR et al (2009) Structure and properties of starch nanocrystal-reinforced soy protein plastics. Polym Compos 30:474–480CrossRef Zheng H, Ai F, Chang PR et al (2009) Structure and properties of starch nanocrystal-reinforced soy protein plastics. Polym Compos 30:474–480CrossRef
Zurück zum Zitat Zhou C, Shi Q, Guo W et al (2013) Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA. ACS Appl Mater Interfaces 5:3847–3854. doi:10.1021/am4005072 CrossRef Zhou C, Shi Q, Guo W et al (2013) Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA. ACS Appl Mater Interfaces 5:3847–3854. doi:10.​1021/​am4005072 CrossRef
Metadaten
Titel
Polysaccharide nanocrystals as fillers for PLA based nanocomposites
verfasst von
Roberto Scaffaro
Luigi Botta
Francesco Lopresti
Andrea Maio
Fiorenza Sutera
Publikationsdatum
29.11.2016
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 2/2017
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-016-1143-3

Weitere Artikel der Ausgabe 2/2017

Cellulose 2/2017 Zur Ausgabe