Skip to main content
Erschienen in: Polymer Bulletin 5/2018

25.07.2017 | Original Paper

Polyurethane porous scaffolds (PPS) for soft tissue regenerative medicine applications

verfasst von: J. Kucińska-Lipka, I. Gubanska, M. Pokrywczynska, H. Ciesliński, N. Filipowicz, T. Drewa, H. Janik

Erschienen in: Polymer Bulletin | Ausgabe 5/2018

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Tissue engineering requires suitable polymeric scaffolds, which act as a physical support for regenerated tissue. A promising candidate might be polyurethane (PUR) scaffold, due to the ease of the PUR properties design, which can be adjusted directly to the intended purpose. In this study, we report a successful fabrication of porous polyurethane scaffolds (PPS) using solvent casting/particulate leaching technique combined with thermally induced phase separation. The obtained PPS had comparable chemical structure to native PUR, which was confirmed by FTIR and HNMR analyses. The performed DSC study determined a similar T g of the obtained PPS to native PUR (−38 °C). The analysis of TEM micrographs revealed that PPS had a homogenous structure. The studied PPS interactions with canola oil, distilled water, saline solution and phosphate-buffered saline after 3 months of incubation revealed that these materials have stable character in these media. The significant decrease of contact angle from 68° for native PUR to 54° for PPS was noted, as well as the decrease of mechanical properties (T Sb ~ 1 MPa and ε b ~ 95% of PPS were comparable to the native aorta tissue of T Sb ~ 0.3–0.8 MPa and ε b ~ 50–100%). Through SEM analysis, the morphology of the PPS was determined: the porosity was 87% and the pore sizes in the range of 98–492 µm. The biological studies revealed that the obtained PPS are sensitive to microorganisms such as Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli and that they are biocompatible with the 3T3 NIH cell line. In summary, the obtained PPS scaffolds may be a suitable material for soft tissue engineering like blood vessels.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS (2011) Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci Article ID 290602, p 19 Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS (2011) Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci Article ID 290602, p 19
2.
Zurück zum Zitat Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926CrossRef Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926CrossRef
3.
Zurück zum Zitat Langer R, Tirell DA (2004) Designing materials for biology and medicine. Nature 428(6982):487–492CrossRef Langer R, Tirell DA (2004) Designing materials for biology and medicine. Nature 428(6982):487–492CrossRef
4.
Zurück zum Zitat Fuchs JR, Nasseri BA, Vacanti JP (2001) Tissue engineering: a 21st century solution to surgical reconstruction. Ann Thorac Surg 72(2):577–591CrossRef Fuchs JR, Nasseri BA, Vacanti JP (2001) Tissue engineering: a 21st century solution to surgical reconstruction. Ann Thorac Surg 72(2):577–591CrossRef
5.
Zurück zum Zitat Ramakrishna S, Mayer J, Wintermantel E, Leong KW (2001) Biomedical applications of polymer-composite materials: a review. Compos Sci Technol 61(9):1189–1224CrossRef Ramakrishna S, Mayer J, Wintermantel E, Leong KW (2001) Biomedical applications of polymer-composite materials: a review. Compos Sci Technol 61(9):1189–1224CrossRef
6.
Zurück zum Zitat Vert M (2005) Aliphatic polyesters: great degradable polymers that cannot do everything. Biomacromol 6(2):538–546CrossRef Vert M (2005) Aliphatic polyesters: great degradable polymers that cannot do everything. Biomacromol 6(2):538–546CrossRef
7.
Zurück zum Zitat Piskin E (1994) Biodegradable polymers as biomaterials. J Biomater Sci Polym Ed 6:775–795CrossRef Piskin E (1994) Biodegradable polymers as biomaterials. J Biomater Sci Polym Ed 6:775–795CrossRef
8.
Zurück zum Zitat Ji Y, Ghosh K, Shu XZ, Li B, Sokolov JC, Prestwich GD et al (2006) Electrospun three-dimensional hyaluronic acid nanofibrous scaffolds. Biomaterials 27(20):3782–3792CrossRef Ji Y, Ghosh K, Shu XZ, Li B, Sokolov JC, Prestwich GD et al (2006) Electrospun three-dimensional hyaluronic acid nanofibrous scaffolds. Biomaterials 27(20):3782–3792CrossRef
9.
Zurück zum Zitat Guntaillake P, Mayadunne R, Adhikari R (2006) Recent developments in biodegradable synthetic polymers. Biotechnol Ann Rev 12:301–347CrossRef Guntaillake P, Mayadunne R, Adhikari R (2006) Recent developments in biodegradable synthetic polymers. Biotechnol Ann Rev 12:301–347CrossRef
10.
Zurück zum Zitat Ma PX (2004) Scaffolds for tissue fabrication. Mater Today 7(5):30–40CrossRef Ma PX (2004) Scaffolds for tissue fabrication. Mater Today 7(5):30–40CrossRef
11.
Zurück zum Zitat Kucinska-Lipka J, Gubanska I, Janik H (2013) Polyurethanes modified with natural polymers for medical application. Part I. Polyurethane/chitosan and polyurethane/collagen. Polim (Polym) 58(9):678CrossRef Kucinska-Lipka J, Gubanska I, Janik H (2013) Polyurethanes modified with natural polymers for medical application. Part I. Polyurethane/chitosan and polyurethane/collagen. Polim (Polym) 58(9):678CrossRef
12.
Zurück zum Zitat Kucinska-Lipka J, Gubanska I, Janik H (2014) Polyurethanes modified with natural polymers for medical application. Part II. Polyurethane/gelatin, polyurethane/starch, polyurethane/cellulose. Polim (Polym) 3:195 Kucinska-Lipka J, Gubanska I, Janik H (2014) Polyurethanes modified with natural polymers for medical application. Part II. Polyurethane/gelatin, polyurethane/starch, polyurethane/cellulose. Polim (Polym) 3:195
13.
Zurück zum Zitat Kucinska-Lipka J, Gubanska I, Janik H (2013) Gelatin-modified polyurethanes for soft tissue scaffold. Sci World J Article ID 450132, p 12 Kucinska-Lipka J, Gubanska I, Janik H (2013) Gelatin-modified polyurethanes for soft tissue scaffold. Sci World J Article ID 450132, p 12
14.
Zurück zum Zitat Guelcher SA (2008) Biodegradable polyurethanes: synthesis and applications in regenerative medicine. Tissue Eng Part B 14(1):3–17CrossRef Guelcher SA (2008) Biodegradable polyurethanes: synthesis and applications in regenerative medicine. Tissue Eng Part B 14(1):3–17CrossRef
15.
Zurück zum Zitat Kucinska-Lipka J, Gubanska I, Janik H, Sienkiewicz M (2015) Fabrication of polyurethane and polyurethane based composite fibers by the electrospinning technique for soft tissue engineering of cardiovascular system. Mater Sci Eng C 46:166–176CrossRef Kucinska-Lipka J, Gubanska I, Janik H, Sienkiewicz M (2015) Fabrication of polyurethane and polyurethane based composite fibers by the electrospinning technique for soft tissue engineering of cardiovascular system. Mater Sci Eng C 46:166–176CrossRef
16.
Zurück zum Zitat Ma PX, Zhang R (2001) Microtubular architecture of biodegradable polymer scaffolds. J Biomed Mater Res 56(4):169–477CrossRef Ma PX, Zhang R (2001) Microtubular architecture of biodegradable polymer scaffolds. J Biomed Mater Res 56(4):169–477CrossRef
17.
Zurück zum Zitat Hutmacher DW (2001) Scaffold design and fabrication technologies for engineering tissues—state of the art and future perspectives. J Biomater Sci 12(1):107CrossRef Hutmacher DW (2001) Scaffold design and fabrication technologies for engineering tissues—state of the art and future perspectives. J Biomater Sci 12(1):107CrossRef
18.
Zurück zum Zitat Freed LE, Vunjak-Novakovic G (1998) Culture of organized cell communities. Adv Drug Deliv Rev 33(1–2):15–30CrossRef Freed LE, Vunjak-Novakovic G (1998) Culture of organized cell communities. Adv Drug Deliv Rev 33(1–2):15–30CrossRef
19.
Zurück zum Zitat Janik H, Marzec M (2015) A review: fabrication of porous polyurethane scaffolds. Mater Sci Eng C Mater Biol Appl 48:586–591CrossRef Janik H, Marzec M (2015) A review: fabrication of porous polyurethane scaffolds. Mater Sci Eng C Mater Biol Appl 48:586–591CrossRef
20.
Zurück zum Zitat Vasita R, Katti DS (2006) Nanofibers and their applications in tissue engineering. Int J Nanomed 1(1):15–30CrossRef Vasita R, Katti DS (2006) Nanofibers and their applications in tissue engineering. Int J Nanomed 1(1):15–30CrossRef
21.
Zurück zum Zitat Sokolsky-Papkov M, Aghashi K, Olaye A, Shakesheff K, Domb AJ (2007) Polymer carriers for drug delivery in tissue engineering. Adv Drug Deliv Rev 59(4–5):187–206CrossRef Sokolsky-Papkov M, Aghashi K, Olaye A, Shakesheff K, Domb AJ (2007) Polymer carriers for drug delivery in tissue engineering. Adv Drug Deliv Rev 59(4–5):187–206CrossRef
22.
Zurück zum Zitat Seneker SD, Born L, Schmelzer HG, Eisenbach CD, Foscher K (1992) Diisocyanato dicyclohexylmethane: structure/property relationships of its geometrical isomers in polyurethane elastomers. Colloid Polym Sci 270(6):553CrossRef Seneker SD, Born L, Schmelzer HG, Eisenbach CD, Foscher K (1992) Diisocyanato dicyclohexylmethane: structure/property relationships of its geometrical isomers in polyurethane elastomers. Colloid Polym Sci 270(6):553CrossRef
23.
Zurück zum Zitat Kucinska-Lipka J, Gubanska I, Janik H, Pokrywczynska M, Drewa T (2015) L-ascorbic acid modified poly(ester urethane)s as a suitable candidates for soft tissue engineering applications. React Funct Polym 97:105–115CrossRef Kucinska-Lipka J, Gubanska I, Janik H, Pokrywczynska M, Drewa T (2015) L-ascorbic acid modified poly(ester urethane)s as a suitable candidates for soft tissue engineering applications. React Funct Polym 97:105–115CrossRef
24.
Zurück zum Zitat Silvestri A, Boffito M, Sartori S, Ciardelli G (2013) Biomimetic materials and scaffolds for myocardial tissue regeneration. Macromol Biosci 13:984–1019CrossRef Silvestri A, Boffito M, Sartori S, Ciardelli G (2013) Biomimetic materials and scaffolds for myocardial tissue regeneration. Macromol Biosci 13:984–1019CrossRef
25.
Zurück zum Zitat Boffito M, Sartori S, Ciardelli G (2014) Polymeric scaffolds for cardiac tissue engineering: requirements and fabrication technologies. Polym Int Forthcom 63:2–11CrossRef Boffito M, Sartori S, Ciardelli G (2014) Polymeric scaffolds for cardiac tissue engineering: requirements and fabrication technologies. Polym Int Forthcom 63:2–11CrossRef
26.
Zurück zum Zitat Janik H, Marzec M (2015) A review: fabrication of porous polyurethane scaffolds. Mater Sci Eng C 48:586–591CrossRef Janik H, Marzec M (2015) A review: fabrication of porous polyurethane scaffolds. Mater Sci Eng C 48:586–591CrossRef
27.
Zurück zum Zitat Janik H (2005) Struktury nadcząsteczkowe i wybrane właściwości rozgałęzionych i usieciowanych poli(estro-uretanów), poli(etero-uretanów) i poli(uretano-biuretanów) formowanych reaktywnie. Zeszyty Naukowe Politechniki Gdańskiej Janik H (2005) Struktury nadcząsteczkowe i wybrane właściwości rozgałęzionych i usieciowanych poli(estro-uretanów), poli(etero-uretanów) i poli(uretano-biuretanów) formowanych reaktywnie. Zeszyty Naukowe Politechniki Gdańskiej
28.
Zurück zum Zitat Szelest-Lewandowska A (2003) Novel polyurethanes for medical applications. PhD Thesis, Gdansk University of Technology, Gdansk Szelest-Lewandowska A (2003) Novel polyurethanes for medical applications. PhD Thesis, Gdansk University of Technology, Gdansk
29.
Zurück zum Zitat Brzeska J, Heimowska A, Sikorska W, Jasińska-Walc L, Kowalczuk M, Rutkowska M (2015) Chemical and enzymatic hydrolysis of polyurethane/polylactide blends. Int J Polym Sci 2015:795985CrossRef Brzeska J, Heimowska A, Sikorska W, Jasińska-Walc L, Kowalczuk M, Rutkowska M (2015) Chemical and enzymatic hydrolysis of polyurethane/polylactide blends. Int J Polym Sci 2015:795985CrossRef
30.
Zurück zum Zitat Roeder RK (2013) Mechanical characterization of biomaterials. In: Bandyopadhyay A, Bose S (eds) Characterization of biomaterials, chap 3. Elsevier, p 94 Roeder RK (2013) Mechanical characterization of biomaterials. In: Bandyopadhyay A, Bose S (eds) Characterization of biomaterials, chap 3. Elsevier, p 94
31.
Zurück zum Zitat Wei L, Li G, Yan YD, Pradhan R, Kim JO, Quan Q (2012) Lipid emulsions as a drug delivery system for breviscapine: formulation development and optimization. Arch Pharm Res 35(6):1037–1043CrossRef Wei L, Li G, Yan YD, Pradhan R, Kim JO, Quan Q (2012) Lipid emulsions as a drug delivery system for breviscapine: formulation development and optimization. Arch Pharm Res 35(6):1037–1043CrossRef
32.
Zurück zum Zitat Guelcher SA, Srinivasan A, Dumas JE, Didier JE, McBride S, Hollinger JO (2008) Synthesis, mechanical properties, biocompatibility and degradation of polyurethane networks from lysine polyisocyanates. Biomaterials 29:1762–1775CrossRef Guelcher SA, Srinivasan A, Dumas JE, Didier JE, McBride S, Hollinger JO (2008) Synthesis, mechanical properties, biocompatibility and degradation of polyurethane networks from lysine polyisocyanates. Biomaterials 29:1762–1775CrossRef
33.
Zurück zum Zitat Cetina-Diaz SM, Chan-Chan LH, Vargas-Coronado RF, Cervantes-Uc JM, Quintana-Owen P (2014) Physicochemical characterization of segmented polyurethanes prepared with glutamine or ascorbic acid as chain extenders and their hydroxyapatite composites. J Mater Chem B 2:1966CrossRef Cetina-Diaz SM, Chan-Chan LH, Vargas-Coronado RF, Cervantes-Uc JM, Quintana-Owen P (2014) Physicochemical characterization of segmented polyurethanes prepared with glutamine or ascorbic acid as chain extenders and their hydroxyapatite composites. J Mater Chem B 2:1966CrossRef
34.
Zurück zum Zitat Punnakitikashem P, Truong D, Menon JU, Nguyen KT, Hong Y (2014) Electrospun biodegradable elastic polyurethane scaffolds with dipyridamole release for small diameter vascular grafts. Acta Biomater 10:4618–4628CrossRef Punnakitikashem P, Truong D, Menon JU, Nguyen KT, Hong Y (2014) Electrospun biodegradable elastic polyurethane scaffolds with dipyridamole release for small diameter vascular grafts. Acta Biomater 10:4618–4628CrossRef
35.
Zurück zum Zitat Nair PA, Ramesh P (2013) Electrospun biodegradable calcium containing poly(ester urethane) urea: synthesis, fabrication, in vitro degradation and biocompatybility evaluation. J Biomed Mater Res Part A 101:1876–1887CrossRef Nair PA, Ramesh P (2013) Electrospun biodegradable calcium containing poly(ester urethane) urea: synthesis, fabrication, in vitro degradation and biocompatybility evaluation. J Biomed Mater Res Part A 101:1876–1887CrossRef
36.
Zurück zum Zitat Yilgor I, Yilgor E, Guler IG, Ward TC, Wilkies GL (2006) FTIR investigation of the influence of diisocyanate symmetry on the morphology development in model segmented polyurethanes. Polymer 47:4105–4114CrossRef Yilgor I, Yilgor E, Guler IG, Ward TC, Wilkies GL (2006) FTIR investigation of the influence of diisocyanate symmetry on the morphology development in model segmented polyurethanes. Polymer 47:4105–4114CrossRef
37.
Zurück zum Zitat Guan J, Stankus JJ, Wagner WR (2006) Soft tissue scaffolds. Wiley Encyclopedia of Biomedical Engineering. Wiley-Interscience, US Guan J, Stankus JJ, Wagner WR (2006) Soft tissue scaffolds. Wiley Encyclopedia of Biomedical Engineering. Wiley-Interscience, US
38.
Zurück zum Zitat Pokrywczynska M, Gubanska I, Drewa G, Drewa T (2015) Application of bladder acellular matrix in urinary bladder regeneration: the state of the art and future directions. Biomed Res Int 2015:613439CrossRef Pokrywczynska M, Gubanska I, Drewa G, Drewa T (2015) Application of bladder acellular matrix in urinary bladder regeneration: the state of the art and future directions. Biomed Res Int 2015:613439CrossRef
39.
Zurück zum Zitat Lee DK, Tsai HB (2000) Properties of segmented polyurethanes derived from different diisocyanates. J Appl Polym Sci 75:167–174CrossRef Lee DK, Tsai HB (2000) Properties of segmented polyurethanes derived from different diisocyanates. J Appl Polym Sci 75:167–174CrossRef
40.
Zurück zum Zitat Kanapitsas A, Pissis P, Ribelles G, Pradas M, Privalko EG, Privalko VP (1999) Molecular mobility and hydration properties of segmented polyurethanes with varying structure of soft and hard-chain segments. J Appl Polym Sci 71:1209–1221CrossRef Kanapitsas A, Pissis P, Ribelles G, Pradas M, Privalko EG, Privalko VP (1999) Molecular mobility and hydration properties of segmented polyurethanes with varying structure of soft and hard-chain segments. J Appl Polym Sci 71:1209–1221CrossRef
41.
Zurück zum Zitat Janik H (2010) Progress in the studies of the supermolecular structure of segmented polyurethanes. Polim (Polym) 6:419 Janik H (2010) Progress in the studies of the supermolecular structure of segmented polyurethanes. Polim (Polym) 6:419
42.
Zurück zum Zitat Hutmacher DW (2008) Scaffold-based bone engineering by using rapid prototyping technologies in Virtual and Rapid manufacturing. In: Bartolo JB (ed) Advanced research in virtual and rapid prototyping. Taylor & Francis Group, New York, p 65 Hutmacher DW (2008) Scaffold-based bone engineering by using rapid prototyping technologies in Virtual and Rapid manufacturing. In: Bartolo JB (ed) Advanced research in virtual and rapid prototyping. Taylor & Francis Group, New York, p 65
43.
Zurück zum Zitat Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21(23):2335–2346CrossRef Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21(23):2335–2346CrossRef
44.
Zurück zum Zitat Bose S, Roy M, Bandyopadhyay A (2012) Recent advances in bone tissue engineering scaffolds. Trend Biotechnol 30(10):546–554CrossRef Bose S, Roy M, Bandyopadhyay A (2012) Recent advances in bone tissue engineering scaffolds. Trend Biotechnol 30(10):546–554CrossRef
45.
Zurück zum Zitat Liu X, Chen W, Gustafson CT, Miller AL, Waletzki BE (2015) Tunable tissue scaffolds fabricated by in situ crosslink phase separation system. RSC Adv 5:100824CrossRef Liu X, Chen W, Gustafson CT, Miller AL, Waletzki BE (2015) Tunable tissue scaffolds fabricated by in situ crosslink phase separation system. RSC Adv 5:100824CrossRef
46.
Zurück zum Zitat Leon CA, Leon Y (1998) New perspectives in mercury porosimetry. Adv Colloid Interface Sci 76–77:341–372CrossRef Leon CA, Leon Y (1998) New perspectives in mercury porosimetry. Adv Colloid Interface Sci 76–77:341–372CrossRef
47.
Zurück zum Zitat Brauker JH, Carr-Brendel VE, Martinson LA, Crudele J, Johnston WD, Johnson RC (1995) Neovascularization of synthetic membranes directed by membrane micro architecture. J Biomed Mater Res 29:1517–1524CrossRef Brauker JH, Carr-Brendel VE, Martinson LA, Crudele J, Johnston WD, Johnson RC (1995) Neovascularization of synthetic membranes directed by membrane micro architecture. J Biomed Mater Res 29:1517–1524CrossRef
48.
Zurück zum Zitat Klawitter JJ, Hulbert SF (1971) application of porous ceramics for the attachment of load-bearing internal orthopedic applications. J Biomed Mater Res A Symp 2:161–168CrossRef Klawitter JJ, Hulbert SF (1971) application of porous ceramics for the attachment of load-bearing internal orthopedic applications. J Biomed Mater Res A Symp 2:161–168CrossRef
49.
Zurück zum Zitat Yang S, Leong KF, Du Z, Chua CK (2001) The design of scaffolds for use in tissue engineering—part I: traditional factors. Tissue Eng 7(6):679–689CrossRef Yang S, Leong KF, Du Z, Chua CK (2001) The design of scaffolds for use in tissue engineering—part I: traditional factors. Tissue Eng 7(6):679–689CrossRef
50.
Zurück zum Zitat Whang K, Healy KE, Elenz DR, Nam EK, Tsai DC, Thomas CH et al (1999) Engineering bone regeneration with bioabsorbable scaffolds with novel microarchitecture. Tissue Eng 5(1):35–51CrossRef Whang K, Healy KE, Elenz DR, Nam EK, Tsai DC, Thomas CH et al (1999) Engineering bone regeneration with bioabsorbable scaffolds with novel microarchitecture. Tissue Eng 5(1):35–51CrossRef
51.
Zurück zum Zitat Yannas IV, Lee E, Orgill DP, Skrabut EM, Murphy GF (1989) Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. Proc Natl Acad Sci USA 86(3):933–937CrossRef Yannas IV, Lee E, Orgill DP, Skrabut EM, Murphy GF (1989) Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. Proc Natl Acad Sci USA 86(3):933–937CrossRef
52.
Zurück zum Zitat Salgado AJ, Coutinho OP, Reis RL (2004) Bone tissue engineering: state of the art and future trends. Macromol Biosci 4(8):743–765CrossRef Salgado AJ, Coutinho OP, Reis RL (2004) Bone tissue engineering: state of the art and future trends. Macromol Biosci 4(8):743–765CrossRef
53.
Zurück zum Zitat Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Progr Polym Sci 32(8–9):762–798CrossRef Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Progr Polym Sci 32(8–9):762–798CrossRef
54.
Zurück zum Zitat Anseth KS, Bowman CN, Brannon-Peppas L (1996) Mechanical properties of hydrogels and their experimental determination. Biomaterials 17(17):1647–1657CrossRef Anseth KS, Bowman CN, Brannon-Peppas L (1996) Mechanical properties of hydrogels and their experimental determination. Biomaterials 17(17):1647–1657CrossRef
55.
Zurück zum Zitat Moghe PV, Berthiaume F, Ezzel RM, Toner M, Tompkins RG, Yarmush ML (1996) Culture matrix configuration and composition in the maintenance of hepatocyte polarity and function. Biomaterials 17(3):373–385CrossRef Moghe PV, Berthiaume F, Ezzel RM, Toner M, Tompkins RG, Yarmush ML (1996) Culture matrix configuration and composition in the maintenance of hepatocyte polarity and function. Biomaterials 17(3):373–385CrossRef
56.
Zurück zum Zitat Rayan PL, Foty RA, Kohn J, Steinberg MS (2001) Tissue spreading on implantable substrates is a competitive outcome of cell–cell vs cell-substrate adhesivity. Proc Natl Acad Sci USA 98(8):4323–4327CrossRef Rayan PL, Foty RA, Kohn J, Steinberg MS (2001) Tissue spreading on implantable substrates is a competitive outcome of cell–cell vs cell-substrate adhesivity. Proc Natl Acad Sci USA 98(8):4323–4327CrossRef
57.
Zurück zum Zitat Ingber DE (2002) Mechanical signalling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ Res 91(10):877–887CrossRef Ingber DE (2002) Mechanical signalling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ Res 91(10):877–887CrossRef
58.
Zurück zum Zitat Wagenseil JE, Mecham RP (2009) Vascular extracellular matrix and arterial mechanics. Physiol Rev 89(3):957–989CrossRef Wagenseil JE, Mecham RP (2009) Vascular extracellular matrix and arterial mechanics. Physiol Rev 89(3):957–989CrossRef
59.
Zurück zum Zitat Holzapfel GA (2000) Biomechanics of soft tissue. Comput Biomech 7 Holzapfel GA (2000) Biomechanics of soft tissue. Comput Biomech 7
60.
Zurück zum Zitat Akhtar R, Sherratt MJ, Cruickshank JK, Derby B (2011) Characterizing the elastic properties of tissues. Mater Today 14(3):96–105CrossRef Akhtar R, Sherratt MJ, Cruickshank JK, Derby B (2011) Characterizing the elastic properties of tissues. Mater Today 14(3):96–105CrossRef
61.
Zurück zum Zitat Han DK, Park KD, Ryu GH, Kim UY, Min BG, Kim YH (1996) Plasma protein adsorption to sulfonated poly(ethylene oxide)-grafted polyurethane surface. J Biomed Mater Res 30:23–30CrossRef Han DK, Park KD, Ryu GH, Kim UY, Min BG, Kim YH (1996) Plasma protein adsorption to sulfonated poly(ethylene oxide)-grafted polyurethane surface. J Biomed Mater Res 30:23–30CrossRef
62.
Zurück zum Zitat Desai NP, Hubbel JA (1991) Biological responses to polyethylene oxide modified polyethylene terephthalate surfaces. J Biomed Mater Res 25:829–843CrossRef Desai NP, Hubbel JA (1991) Biological responses to polyethylene oxide modified polyethylene terephthalate surfaces. J Biomed Mater Res 25:829–843CrossRef
63.
Zurück zum Zitat Morton LHG, Surman SB (1994) Biofilms in biodeterioration—a review. Int Biodeter Biodegr 32:203–221CrossRef Morton LHG, Surman SB (1994) Biofilms in biodeterioration—a review. Int Biodeter Biodegr 32:203–221CrossRef
64.
Zurück zum Zitat Hoskins C, Cheng WP (2013) Hydrophobic drug solubilisation in Fundamentals of pharmaceutical nanoscience. In: Uchegbu I, Schatzlein AG, Cheng WP, Lalotsa A (eds) 14 edn, Springer, NY, p 386 Hoskins C, Cheng WP (2013) Hydrophobic drug solubilisation in Fundamentals of pharmaceutical nanoscience. In: Uchegbu I, Schatzlein AG, Cheng WP, Lalotsa A (eds) 14 edn, Springer, NY, p 386
65.
Zurück zum Zitat Karchin A, Simonovsky FI, Ratner BD, Sanders JE (2011) Melt electrospinning of biodegradable polyurethane scaffolds. Acta Biomater 7(9):3277–3284CrossRef Karchin A, Simonovsky FI, Ratner BD, Sanders JE (2011) Melt electrospinning of biodegradable polyurethane scaffolds. Acta Biomater 7(9):3277–3284CrossRef
Metadaten
Titel
Polyurethane porous scaffolds (PPS) for soft tissue regenerative medicine applications
verfasst von
J. Kucińska-Lipka
I. Gubanska
M. Pokrywczynska
H. Ciesliński
N. Filipowicz
T. Drewa
H. Janik
Publikationsdatum
25.07.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Polymer Bulletin / Ausgabe 5/2018
Print ISSN: 0170-0839
Elektronische ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-017-2124-x

Weitere Artikel der Ausgabe 5/2018

Polymer Bulletin 5/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.