Skip to main content
Erschienen in: Journal of Nanoparticle Research 6/2017

01.06.2017 | Research Paper

Polyvinylpyrrolidone stabilized-Ru nanoclusters loaded onto reduced graphene oxide as high active catalyst for hydrogen evolution

verfasst von: Jiao Zhang, Jinghao Hao, Qianli Ma, Chuanqi Li, Yushan Liu, Baojun Li, Zhongyi Liu

Erschienen in: Journal of Nanoparticle Research | Ausgabe 6/2017

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ruthenium/reduced graphene oxide nanocomposites (Ru/rGO NCs) were synthesized via an electrostatic self-assembly approach. Polyvinylpyrrolidone (PVP) stabilized and positively charged metallic ruthenium nanoclusters about 1.2 nm were synthesized and uniformly loaded onto negatively charged graphene oxide (GO) sheets via strong electrostatic interactions. The as-prepared Ru/rGO NCs exhibited superior performance in catalytic hydrolysis of sodium borohydride (NaBH4) to generate H2. The hydrogen generation rate was up to 14.87 L H2 min−1 gcat −1 at 318 K with relatively low activation energy of 38.12 kJ mol−1. Kinetics study confirmed that the hydrolysis of NaBH4 was first order with respect to concentration of catalysts. Besides, the conversion of NaBH4 remained at 97% and catalytic activity retained more than 70% after 5 reaction cycles at room temperature. These results suggested that the Ru/rGO NCs have a promising prospect in the field of clean energy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Akbayrak S, Özkar S (2012) Ruthenium (0) nanoparticles supported on multiwalled carbon nanotube as highly active catalyst for hydrogen generation from ammonia-borane. Appl Mater Interfaces 4:6302–6310CrossRef Akbayrak S, Özkar S (2012) Ruthenium (0) nanoparticles supported on multiwalled carbon nanotube as highly active catalyst for hydrogen generation from ammonia-borane. Appl Mater Interfaces 4:6302–6310CrossRef
Zurück zum Zitat Amendola SC, Sharp-Goldman SL, Saleem Janjua M, Kelly MT, Petillo PJ, Binder M (2000a) An ultrasafe hydrogen generator: aqueous, alkaline borohydride solutions and Ru catalyst. J Power Sources 85:186–189CrossRef Amendola SC, Sharp-Goldman SL, Saleem Janjua M, Kelly MT, Petillo PJ, Binder M (2000a) An ultrasafe hydrogen generator: aqueous, alkaline borohydride solutions and Ru catalyst. J Power Sources 85:186–189CrossRef
Zurück zum Zitat Amendola SC, Sharp-Goldman SL, Saleem Janjua M, Spencer NC, Kelly MT, Petillo PJ, Binder M (2000b) A safe, portable, hydrogen gas generator using aqueous borohydride solution and Ru catalyst. Int J Hydrog Energy 25:969–975CrossRef Amendola SC, Sharp-Goldman SL, Saleem Janjua M, Spencer NC, Kelly MT, Petillo PJ, Binder M (2000b) A safe, portable, hydrogen gas generator using aqueous borohydride solution and Ru catalyst. Int J Hydrog Energy 25:969–975CrossRef
Zurück zum Zitat Bai Y, Wu C, Wu F, Yi B (2006) Carbon-supported platinum catalysts for on-site hydrogen generation from NaBH4 solution. Mater Lett 60:2236–2239CrossRef Bai Y, Wu C, Wu F, Yi B (2006) Carbon-supported platinum catalysts for on-site hydrogen generation from NaBH4 solution. Mater Lett 60:2236–2239CrossRef
Zurück zum Zitat Cao N, Luo W, Cheng G (2013) One-step synthesis of graphene supported Ru nanoparticles as efficient catalysts for hydrolytic dehydrogenation of ammonia borane. Int J Hydrog Energy 38:11964–11972CrossRef Cao N, Luo W, Cheng G (2013) One-step synthesis of graphene supported Ru nanoparticles as efficient catalysts for hydrolytic dehydrogenation of ammonia borane. Int J Hydrog Energy 38:11964–11972CrossRef
Zurück zum Zitat Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based Photocatalytic hydrogen generation. Chem Rev 110:6503–6570CrossRef Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based Photocatalytic hydrogen generation. Chem Rev 110:6503–6570CrossRef
Zurück zum Zitat Chou CC, Hsieh CH, Chen BH (2015) Hydrogen generation from catalytic hydrolysis of sodium borohydride using bimetallic Ni–Co nanoparticles on reduced graphene oxide as catalysts. Energy 90:1973–1982CrossRef Chou CC, Hsieh CH, Chen BH (2015) Hydrogen generation from catalytic hydrolysis of sodium borohydride using bimetallic Ni–Co nanoparticles on reduced graphene oxide as catalysts. Energy 90:1973–1982CrossRef
Zurück zum Zitat Crisafulli C, Scirè S, Salanitri M, Zito R, Calamia S (2011) Hydrogen production through NaBH4 hydrolysis over supported Ru catalysts: an insight on the effect of the support and the ruthenium precursor. Int J Hydrog Energy 36:3817–3826CrossRef Crisafulli C, Scirè S, Salanitri M, Zito R, Calamia S (2011) Hydrogen production through NaBH4 hydrolysis over supported Ru catalysts: an insight on the effect of the support and the ruthenium precursor. Int J Hydrog Energy 36:3817–3826CrossRef
Zurück zum Zitat Crisafulli C, Scirè S, Zito R, Bongiorno C (2012) Role of the support and the Ru precursor on the performance of Ru/carbon catalysts towards H2 production through NaBH4 hydrolysis. Catal Lett 142:882–888CrossRef Crisafulli C, Scirè S, Zito R, Bongiorno C (2012) Role of the support and the Ru precursor on the performance of Ru/carbon catalysts towards H2 production through NaBH4 hydrolysis. Catal Lett 142:882–888CrossRef
Zurück zum Zitat Ding J, Li B, Liu Y, Yan X, Zeng S, Zhang X, Hou L, Cai Q, Zhang J (2015) Fabrication of Fe3O4@reduced graphene oxide composite via novel colloid electrostatic self-assembly process for removal of contaminants from water. J Mater Chem A 3:832–839CrossRef Ding J, Li B, Liu Y, Yan X, Zeng S, Zhang X, Hou L, Cai Q, Zhang J (2015) Fabrication of Fe3O4@reduced graphene oxide composite via novel colloid electrostatic self-assembly process for removal of contaminants from water. J Mater Chem A 3:832–839CrossRef
Zurück zum Zitat Dresselhaus MS, Thomas IL (2001) Alternative energy technologies. Nature 414:332–337CrossRef Dresselhaus MS, Thomas IL (2001) Alternative energy technologies. Nature 414:332–337CrossRef
Zurück zum Zitat Durap F, Zahmakiran M, Özkar S (2009) Water soluble laurate-stabilized ruthenium (0) nanoclusters catalyst for hydrogen generation from the hydrolysis of ammonia-borane: high activity and long lifetime. Int J Hydrog Energy 34:7223–7230CrossRef Durap F, Zahmakiran M, Özkar S (2009) Water soluble laurate-stabilized ruthenium (0) nanoclusters catalyst for hydrogen generation from the hydrolysis of ammonia-borane: high activity and long lifetime. Int J Hydrog Energy 34:7223–7230CrossRef
Zurück zum Zitat Edla R, Gupta S, Patel N, Bazzanellaa N, Fernandesc R, Kotharic DC, Miotello A (2016) Enhanced H2 production from hydrolysis of sodium borohydride using Co3O4 nanoparticles assembled coatings prepared by pulsed laser deposition. Appl Catal A Gen 515:1–9CrossRef Edla R, Gupta S, Patel N, Bazzanellaa N, Fernandesc R, Kotharic DC, Miotello A (2016) Enhanced H2 production from hydrolysis of sodium borohydride using Co3O4 nanoparticles assembled coatings prepared by pulsed laser deposition. Appl Catal A Gen 515:1–9CrossRef
Zurück zum Zitat Fan G, Huang W, Wang C (2013) In situ synthesis of Ru/RGO nanocomposites as a highly efficient catalyst for selective hydrogenation of halonitroaromatics. Nano 5:6819–6825 Fan G, Huang W, Wang C (2013) In situ synthesis of Ru/RGO nanocomposites as a highly efficient catalyst for selective hydrogenation of halonitroaromatics. Nano 5:6819–6825
Zurück zum Zitat Hsueh CL, Chen CY, Ku JR, Tsai SF, Hsu YY, Tsau F, Jeng MS (2008) Simple and fast fabrication of polymer template-Ru composite as a catalyst for hydrogen generation from alkaline NaBH4 solution. J Power Sources 177:485–492CrossRef Hsueh CL, Chen CY, Ku JR, Tsai SF, Hsu YY, Tsau F, Jeng MS (2008) Simple and fast fabrication of polymer template-Ru composite as a catalyst for hydrogen generation from alkaline NaBH4 solution. J Power Sources 177:485–492CrossRef
Zurück zum Zitat Hummers WSJ, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRef Hummers WSJ, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRef
Zurück zum Zitat Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105CrossRef Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105CrossRef
Zurück zum Zitat Li Y, Zhang Q, Zhang N, Zhu L, Zheng J, Chen BH (2013) Ru-RuO2/C as an efficient catalyst for the sodium borohydride hydrolysis to hydrogen. Int J Hydrog Energy 38:13360–13367CrossRef Li Y, Zhang Q, Zhang N, Zhu L, Zheng J, Chen BH (2013) Ru-RuO2/C as an efficient catalyst for the sodium borohydride hydrolysis to hydrogen. Int J Hydrog Energy 38:13360–13367CrossRef
Zurück zum Zitat Li X, Fan G, Zeng C (2014) Synthesis of ruthenium nanoparticles deposited on graphene-like transition metal carbide as an effective catalyst for the hydrolysis of sodium borohydride. Int J Hydrog Energy 39:14927–14934CrossRef Li X, Fan G, Zeng C (2014) Synthesis of ruthenium nanoparticles deposited on graphene-like transition metal carbide as an effective catalyst for the hydrolysis of sodium borohydride. Int J Hydrog Energy 39:14927–14934CrossRef
Zurück zum Zitat Liang Y, Dai HB, Ma LP, Wang P, Cheng HM (2010) Hydrogen generation from sodium borohydride solution using a ruthenium supported on graphite catalyst. Int J Hydrog Energy 35:3023–3028CrossRef Liang Y, Dai HB, Ma LP, Wang P, Cheng HM (2010) Hydrogen generation from sodium borohydride solution using a ruthenium supported on graphite catalyst. Int J Hydrog Energy 35:3023–3028CrossRef
Zurück zum Zitat Liu Z, Guo B, Chan SH, Tang EH, Hong L (2008) Pt and Ru dispersed on LiCoO2 for hydrogen generation from sodium borohydride solutions. J Power Sources 176:306–311CrossRef Liu Z, Guo B, Chan SH, Tang EH, Hong L (2008) Pt and Ru dispersed on LiCoO2 for hydrogen generation from sodium borohydride solutions. J Power Sources 176:306–311CrossRef
Zurück zum Zitat Liu CH, Chen BH, Hsueh CL, Ku JR, Jeng MS, Tsau F (2009) Hydrogen generation from hydrolysis of sodium borohydride using Ni–Ru nanocomposite as catalysts. Int J Hydrog Energy 34:2153–2163CrossRef Liu CH, Chen BH, Hsueh CL, Ku JR, Jeng MS, Tsau F (2009) Hydrogen generation from hydrolysis of sodium borohydride using Ni–Ru nanocomposite as catalysts. Int J Hydrog Energy 34:2153–2163CrossRef
Zurück zum Zitat Mahmood J, Jung SM, Kim SJ, Park J, Yoo JW, Baek JB (2015) Cobalt oxide encapsulated in C2N-h2D network polymer as a catalyst for hydrogen evolution. Chem Mater 27:4860–4864CrossRef Mahmood J, Jung SM, Kim SJ, Park J, Yoo JW, Baek JB (2015) Cobalt oxide encapsulated in C2N-h2D network polymer as a catalyst for hydrogen evolution. Chem Mater 27:4860–4864CrossRef
Zurück zum Zitat Marrero-Alfonso EY, Beaird AM, Davis TA, Matthews MA (2009) Hydrogen generation from chemical hydrides. Ind Eng Chem Res 48:3703–3712CrossRef Marrero-Alfonso EY, Beaird AM, Davis TA, Matthews MA (2009) Hydrogen generation from chemical hydrides. Ind Eng Chem Res 48:3703–3712CrossRef
Zurück zum Zitat Ou T, Barbucci A, Carpanese P, Congiu S, Panizza M (2014) Thermodynamic and kinetic studies of NaBH4 regeneration by NaBO2-mg-H2 ternary system at isothermal condition. Int J Hydrog Energy 39:11094–11102CrossRef Ou T, Barbucci A, Carpanese P, Congiu S, Panizza M (2014) Thermodynamic and kinetic studies of NaBH4 regeneration by NaBO2-mg-H2 ternary system at isothermal condition. Int J Hydrog Energy 39:11094–11102CrossRef
Zurück zum Zitat Özhava D, Özkar S (2015) Rhodium (0) nanoparticles supported on hydroxyapatite nanospheres and further stabilized by dihydrogen phosphate ion: a highly active catalyst in hydrogen generation from the methanolysis of ammonia borane. Int J Hydrog Energy 40:10491–10501CrossRef Özhava D, Özkar S (2015) Rhodium (0) nanoparticles supported on hydroxyapatite nanospheres and further stabilized by dihydrogen phosphate ion: a highly active catalyst in hydrogen generation from the methanolysis of ammonia borane. Int J Hydrog Energy 40:10491–10501CrossRef
Zurück zum Zitat Özkar S, Zahmakıran M (2005) Hydrogen generation from hydrolysis of sodium borohydride using Ru (0) nanoclusters as catalyst. J Alloys Compd 404:728–731CrossRef Özkar S, Zahmakıran M (2005) Hydrogen generation from hydrolysis of sodium borohydride using Ru (0) nanoclusters as catalyst. J Alloys Compd 404:728–731CrossRef
Zurück zum Zitat Pinto PJR, Sousa T, Fernandes VR, Pinto AMFR, Rangel CM (2013) Simulation of a stand-alone residential PEMFC power system with sodium borohydride as hydrogen source. Int J Electr Power Energy Syst 49:57–65CrossRef Pinto PJR, Sousa T, Fernandes VR, Pinto AMFR, Rangel CM (2013) Simulation of a stand-alone residential PEMFC power system with sodium borohydride as hydrogen source. Int J Electr Power Energy Syst 49:57–65CrossRef
Zurück zum Zitat Sahiner N, Ozaya O, Ingerc E, Aktasd N (2011) Controllable hydrogen generation by use smart hydrogel reactor containing Ru nano catalyst and magnetic iron nanoparticles. J Power Sources 196:10105–10111CrossRef Sahiner N, Ozaya O, Ingerc E, Aktasd N (2011) Controllable hydrogen generation by use smart hydrogel reactor containing Ru nano catalyst and magnetic iron nanoparticles. J Power Sources 196:10105–10111CrossRef
Zurück zum Zitat Seven F, Sahiner N (2014) Superporous P(2-hydroxyethyl methacrylate) cryogel-M (M:Co, Ni, Cu) composites as highly effective catalysts in H2 generation from hydrolysis of NaBH4 and NH3BH3. Int J Hydrog Energy 39:15455–15463CrossRef Seven F, Sahiner N (2014) Superporous P(2-hydroxyethyl methacrylate) cryogel-M (M:Co, Ni, Cu) composites as highly effective catalysts in H2 generation from hydrolysis of NaBH4 and NH3BH3. Int J Hydrog Energy 39:15455–15463CrossRef
Zurück zum Zitat Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286 Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286
Zurück zum Zitat Su CC, Lu MC, Wang SL, Huang YH (2012) Ruthenium immobilized on Al2O3 pellets as a catalyst for hydrogen generation from hydrolysis and methanolysis of sodium borohydride. RSC Adv 2:2073–2079CrossRef Su CC, Lu MC, Wang SL, Huang YH (2012) Ruthenium immobilized on Al2O3 pellets as a catalyst for hydrogen generation from hydrolysis and methanolysis of sodium borohydride. RSC Adv 2:2073–2079CrossRef
Zurück zum Zitat Tang M, Xia F, Gao C, Qiu H (2016) Preparation of magnetically recyclable CuFe2O4/RGO for catalytic hydrolysis of sodium borohydride. Int J Hydrog Energy 41:13058–13068CrossRef Tang M, Xia F, Gao C, Qiu H (2016) Preparation of magnetically recyclable CuFe2O4/RGO for catalytic hydrolysis of sodium borohydride. Int J Hydrog Energy 41:13058–13068CrossRef
Zurück zum Zitat Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53:1126–1130CrossRef Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53:1126–1130CrossRef
Zurück zum Zitat Turhan T, Avcıbası YG, Sahiner N (2013) Versatile p(3-sulfopropyl methacrylate) hydrogel reactor for the preparation of Co, Ni nanoparticles and their use in hydrogen production. J Ind Eng Chem 19:1218–1225CrossRef Turhan T, Avcıbası YG, Sahiner N (2013) Versatile p(3-sulfopropyl methacrylate) hydrogel reactor for the preparation of Co, Ni nanoparticles and their use in hydrogen production. J Ind Eng Chem 19:1218–1225CrossRef
Zurück zum Zitat Wang S, Yu D, Dai L, Chang D, Beak JB (2011) Polyelectrolyte-functionalized graphene as metal-free electrocatalysts for oxygen reduction. ACS Nano 5:6202–6209CrossRef Wang S, Yu D, Dai L, Chang D, Beak JB (2011) Polyelectrolyte-functionalized graphene as metal-free electrocatalysts for oxygen reduction. ACS Nano 5:6202–6209CrossRef
Zurück zum Zitat Wang J, Qin YL, Liu X, Zhang XB (2012) In situ synthesis of magnetically recyclable graphene-supported Pd@ Co core–shell nanoparticles as efficient catalysts for hydrolytic dehydrogenation of ammonia borane. J Mater Chem 22:12468–12470CrossRef Wang J, Qin YL, Liu X, Zhang XB (2012) In situ synthesis of magnetically recyclable graphene-supported Pd@ Co core–shell nanoparticles as efficient catalysts for hydrolytic dehydrogenation of ammonia borane. J Mater Chem 22:12468–12470CrossRef
Zurück zum Zitat Xi P, Chen F, Xie G, Ma C, Liu H, Shao C, Wang J, Xu Z, Xu X, Zeng Z (2012) Surfactant free RGO/Pd nanocomposites as highly active heterogeneous catalysts for the hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage. Nano 4:5597–5601 Xi P, Chen F, Xie G, Ma C, Liu H, Shao C, Wang J, Xu Z, Xu X, Zeng Z (2012) Surfactant free RGO/Pd nanocomposites as highly active heterogeneous catalysts for the hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage. Nano 4:5597–5601
Zurück zum Zitat Xiao CX, Cai ZP, Wang T, Kou Y, Yan N (2008) Aqueous-phase Fischer–Tropsch synthesis with a ruthenium nanocluster catalyst. Angew Chem Int Ed 47:746–749CrossRef Xiao CX, Cai ZP, Wang T, Kou Y, Yan N (2008) Aqueous-phase Fischer–Tropsch synthesis with a ruthenium nanocluster catalyst. Angew Chem Int Ed 47:746–749CrossRef
Zurück zum Zitat Xiao CX, Goh TW, Qi Z, Goes S, Brashler K, Perez C, Huang W (2016) Conversion of levulinic acid to γ-valerolactone over few-layer graphene-supported ruthenium catalysts. ACS Catal 6(2):593–599CrossRef Xiao CX, Goh TW, Qi Z, Goes S, Brashler K, Perez C, Huang W (2016) Conversion of levulinic acid to γ-valerolactone over few-layer graphene-supported ruthenium catalysts. ACS Catal 6(2):593–599CrossRef
Zurück zum Zitat Yang CC, Chen MS, Chen YW (2011) Hydrogen generation by hydrolysis of sodium borohydride on CoB/SiO2 catalyst. Int J Hydrog Energy 36:1418–1423CrossRef Yang CC, Chen MS, Chen YW (2011) Hydrogen generation by hydrolysis of sodium borohydride on CoB/SiO2 catalyst. Int J Hydrog Energy 36:1418–1423CrossRef
Zurück zum Zitat Yang L, Su J, Meng X, Luo W, Cheng G (2013) In situ synthesis of graphene supported Ag@ CoNi core-shell nanoparticles as highly efficient catalysts for hydrogen generation from hydrolysis of ammonia borane and methylamine borane. J Mater Chem A 1:10016–10023CrossRef Yang L, Su J, Meng X, Luo W, Cheng G (2013) In situ synthesis of graphene supported Ag@ CoNi core-shell nanoparticles as highly efficient catalysts for hydrogen generation from hydrolysis of ammonia borane and methylamine borane. J Mater Chem A 1:10016–10023CrossRef
Zurück zum Zitat Zahmakiran M, Özkar S (2009) Zeolite-confined ruthenium (0) nanoclusters catalyst: record catalytic activity, reusability, and lifetime in hydrogen generation from the hydrolysis of sodium Borohydride. Langmuir 25:2667–2678CrossRef Zahmakiran M, Özkar S (2009) Zeolite-confined ruthenium (0) nanoclusters catalyst: record catalytic activity, reusability, and lifetime in hydrogen generation from the hydrolysis of sodium Borohydride. Langmuir 25:2667–2678CrossRef
Zurück zum Zitat Zhang J, Zheng Y, Gore JP, Fisher TS (2007) 1kW e sodium borohydride hydrogen generation system: part I: experimental study. J Power Sources 165:844–853CrossRef Zhang J, Zheng Y, Gore JP, Fisher TS (2007) 1kW e sodium borohydride hydrogen generation system: part I: experimental study. J Power Sources 165:844–853CrossRef
Zurück zum Zitat Zhang J, Yang H, Shen G, Cheng P, Zhang J, Guo S (2010) Reduction of graphene oxide via L-ascorbic acid. Chem Commun 46:1112–1114CrossRef Zhang J, Yang H, Shen G, Cheng P, Zhang J, Guo S (2010) Reduction of graphene oxide via L-ascorbic acid. Chem Commun 46:1112–1114CrossRef
Metadaten
Titel
Polyvinylpyrrolidone stabilized-Ru nanoclusters loaded onto reduced graphene oxide as high active catalyst for hydrogen evolution
verfasst von
Jiao Zhang
Jinghao Hao
Qianli Ma
Chuanqi Li
Yushan Liu
Baojun Li
Zhongyi Liu
Publikationsdatum
01.06.2017
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 6/2017
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-017-3924-5

Weitere Artikel der Ausgabe 6/2017

Journal of Nanoparticle Research 6/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.