Skip to main content

2020 | OriginalPaper | Buchkapitel

3. Pontryagin’s Principle for a Class of Discrete Time Infinite Horizon Optimal Growth Problems

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, we aim to apply the approach of weak Pontryagin’s principles to a class of discrete time infinite horizon optimal growth problems. The idea of this approach is to transform the optimal growth problem into a dynamical system which is governed by a difference equation or a difference inequation. We establish necessary and sufficient conditions of optimality in terms of weak Pontryagin’s principles.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
A discussion can be found in [11] which gives the mathematical background of the classical approaches for the optimal growth problem together with the recent developments.
 
2
These are also Theorem 3.3 and Theorem 3.8 of [8].
 
3
Essentially the Assumption (H1) in [9]. Note that Assumption (H4) is always satisfied in our case since \(\frac {\partial g}{\partial c}(k_t, c_t) = -1\neq 0\) for all t = 0,  1…
 
4
(Co) holds if the utility function u is supposed to be concave since we have f(k t) = c t + k t+1, we will have the following concave Pontryagin’s Hamiltonian function:
$$\displaystyle \begin{aligned}H_t(k,c,1, \lambda_{t+1}) = \beta^{t}u(c_t) + \lambda_{t+1} (f(k_t) -c_t) = \beta^{t}u(c_t) + k_{t+1}\end{aligned}$$
 
5
In general, the production function is supposed to be of type Cobb-Douglas f(k, r) = Ak αr β where the exponents α and β represent the elasticity of production with respect to capital and the extracted natural resource, respectively.
 
6
Sometimes, a stronger conservation constraint is taken into account in the sense that \(s_t\geq \bar {s}\) where \(\bar {s}>0\) for all t = 0,  1, …. This refers to a strong conservation concern implying sustainability. In this chapter, we suppose only the less strong one in order to be able to obtain the analytical results.
 
7
In [1], they propose a bounded case with a difference equation system; here, with a slight change we give the result for the bounded case with a difference inequation system.
 
8
The mapping (s t, k t, r t, c t)↦Dg (r,c)(s t, k t, r t, c t) is continuous since g is continuously differentiable and the composition with the determinant is also continuous; therefore, there exists a neighborhood containing (s , k , r , c ) such that the set \(\{(s_t, k_t, r_t, c_t)| \det Dg_{(r,c)}(s_t, k_t, r_t, c_t)\neq 0 \}\) is open. Here,
$$\displaystyle \begin{gathered} \left |{\begin{array}{cc} \frac{\partial g_1}{\partial r_t}(s_t^*, k_t^*, r_t^*, c_t^*) & \frac{\partial g_1}{\partial c_t}(s_t^*, k_t^*, r_t^*, c_t^*) \\ \frac{\partial g_2}{\partial r_t}(s_t^*, k_t^*, r_t^*, c_t^*) & \frac{\partial g_2}{\partial c_t}(s_t^*, k_t^*, r_t^*, c_t^*) \end{array} } \right| = \left |{\begin{array}{cc} -1 & 0 \\ \frac{\partial f}{\partial r_t}(k_t^*, r_t^*) & 1 \end{array} } \right| \neq 0 \end{gathered} $$
Moreover, \(\sigma :=\sup _{t\in \mathbb N} ||Dg_{(r,c)}(s^*, k^*, r^*, c^*)^{-1} ||\in (0, +\infty )\) since Dg (r,c)(s , k , r , c )−1 = Dg (r,c)(s , k , r , c ) with a convenient production function f(k t, r t).
 
9
This assumption on mortality and the recruitment parameters m j, ν j ∈ [0,  1] is essential for the result.
 
10
Since \(\lambda ^*\in \ell ^{1}(\mathbb N, \mathbb R^{n*})\) the Transversality Condition (TC) holds, that is, \(\lim _{t\to +\infty } \lambda _t^{*}= 0\) (3.37)
 
Literatur
1.
Zurück zum Zitat M. De Lara, L. Doyen, Sustainable Management of Natural Resources: Mathematical Models and Methods (Springer Science and Business Media, Berlin, 2008)CrossRef M. De Lara, L. Doyen, Sustainable Management of Natural Resources: Mathematical Models and Methods (Springer Science and Business Media, Berlin, 2008)CrossRef
2.
Zurück zum Zitat P. Dasgupta, G. Heal, The optimal depletion of exhaustible resources. Rev. Econ. Stud. 41, 1–28 (1974)CrossRef P. Dasgupta, G. Heal, The optimal depletion of exhaustible resources. Rev. Econ. Stud. 41, 1–28 (1974)CrossRef
3.
Zurück zum Zitat R.M. Solow, Intergenerational equity and exhaustible resources. Rev. Econ. Stud. 41, 29–45 (1974)CrossRef R.M. Solow, Intergenerational equity and exhaustible resources. Rev. Econ. Stud. 41, 29–45 (1974)CrossRef
4.
Zurück zum Zitat C.W. Clark, Mathematical Bioeconomics: The Mathematics of Conservation (Wiley, Hoboken, 2010) C.W. Clark, Mathematical Bioeconomics: The Mathematics of Conservation (Wiley, Hoboken, 2010)
5.
Zurück zum Zitat N. Stokey, R.E. Lucas Jr., E.C. Prescott, Recursive Methods in Economic Dynamics (Harvard University Press, New York, 1989)CrossRef N. Stokey, R.E. Lucas Jr., E.C. Prescott, Recursive Methods in Economic Dynamics (Harvard University Press, New York, 1989)CrossRef
6.
Zurück zum Zitat R.A. Dana, C. Le Van, Dynamic Programming in Economics (Springer Science & Business Media, Dordrecht, 2003)MATH R.A. Dana, C. Le Van, Dynamic Programming in Economics (Springer Science & Business Media, Dordrecht, 2003)MATH
7.
Zurück zum Zitat C. Le Van, C. Saglam, Optimal growth models and the Lagrange multiplier. J. Math. Econ. 40(3), 393–410 (2004)MathSciNetCrossRef C. Le Van, C. Saglam, Optimal growth models and the Lagrange multiplier. J. Math. Econ. 40(3), 393–410 (2004)MathSciNetCrossRef
8.
Zurück zum Zitat J. Blot, N. Hayek, Infinite-horizon Optimal Control in the Discrete-time Framework. Springer Briefs in Optimization (Springer, New York, 2014) J. Blot, N. Hayek, Infinite-horizon Optimal Control in the Discrete-time Framework. Springer Briefs in Optimization (Springer, New York, 2014)
9.
Zurück zum Zitat J. Blot, N. Hayek, F. Pekergin, N. Pekergin, Pontryagin principles for bounded discrete-time processes. Optimization 64(3), 505–520 (2015)MathSciNetMATH J. Blot, N. Hayek, F. Pekergin, N. Pekergin, Pontryagin principles for bounded discrete-time processes. Optimization 64(3), 505–520 (2015)MathSciNetMATH
10.
Zurück zum Zitat J. Blot, N. Hayek, F. Pekergin, N. Pekergin, The competition between Internet service qualities from a difference game viewpoint. Int. Game Theory Rev. 14(01), 1250001 (2012) J. Blot, N. Hayek, F. Pekergin, N. Pekergin, The competition between Internet service qualities from a difference game viewpoint. Int. Game Theory Rev. 14(01), 1250001 (2012)
11.
Zurück zum Zitat A.Y. Ulus, On discrete time infinite horizon optimal growth problem. Int. J. Optim. Control 8(1), 102–116 (2017)MathSciNet A.Y. Ulus, On discrete time infinite horizon optimal growth problem. Int. J. Optim. Control 8(1), 102–116 (2017)MathSciNet
12.
Zurück zum Zitat H. Hotelling, The economics of exhaustible resources. J. Polit. Econ. 39(2), 137–175 (1931)CrossRef H. Hotelling, The economics of exhaustible resources. J. Polit. Econ. 39(2), 137–175 (1931)CrossRef
13.
Zurück zum Zitat H. Caswell, Matrix Population Models, 2nd edn. (Sinauer Associates, Sunderland, 2001), pp. 91–92 H. Caswell, Matrix Population Models, 2nd edn. (Sinauer Associates, Sunderland, 2001), pp. 91–92
Metadaten
Titel
Pontryagin’s Principle for a Class of Discrete Time Infinite Horizon Optimal Growth Problems
verfasst von
Ayşegül Yıldız Ulus
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-37062-6_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.