Skip to main content
Erschienen in: Journal of Materials Science 17/2018

04.06.2018 | Chemical routes to materials

Porous carbon derived from waste polystyrene foam for supercapacitor

verfasst von: Yixin Zhang, Zhimin Shen, Yifeng Yu, Lei Liu, Guoxu Wang, Aibing Chen

Erschienen in: Journal of Materials Science | Ausgabe 17/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Polystyrene, one of the classical plastic, has caused serious environmental problems due to overuse and inability to recycle effectively. Transforming it into functional carbon materials is one of the effective ways to recycle polystyrene and other waste plastics, which has drawn the attention. In this study, we have developed a facile and efficient method for the preparation of three-dimensional (3D) network structure porous carbon (PC) via the Friedel–Crafts reaction with waste polystyrene serves as carbon source. Notably, the constructed carbonyl (–CO–) cross-linking bridges between the linear polystyrenes provide the resulting hierarchical porous polystyrene with a high cross-linking density and amounts of oxygen atoms to achieve the carbonizability of cross-linking polystyrene framework. Moreover, silica particles created more porous structure for carbon material. The prepared PC showed large specific surface area and 3D porous structure and exhibited good capacitance and electrochemical stability as electrode materials for supercapacitor.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Fu Z, Jia J, Li J et al (2017) Transforming waste expanded polystyrene foam into hypercrosslinked polymers for carbon dioxide capture and separation. Chem Eng J 323:557–564CrossRef Fu Z, Jia J, Li J et al (2017) Transforming waste expanded polystyrene foam into hypercrosslinked polymers for carbon dioxide capture and separation. Chem Eng J 323:557–564CrossRef
2.
Zurück zum Zitat Al-Salem SM, Lettieri P, Baeyens J (2009) Recycling and recovery routes of plastic solid waste (PSW): a review. Waste Manag 29:2625–2643CrossRef Al-Salem SM, Lettieri P, Baeyens J (2009) Recycling and recovery routes of plastic solid waste (PSW): a review. Waste Manag 29:2625–2643CrossRef
3.
Zurück zum Zitat Kan A, Demirboğa R (2009) A new technique of processing for waste-expanded polystyrene foams as aggregates. J Mater Process Technol 209:2994–3000CrossRef Kan A, Demirboğa R (2009) A new technique of processing for waste-expanded polystyrene foams as aggregates. J Mater Process Technol 209:2994–3000CrossRef
4.
Zurück zum Zitat Ignatyev IA, Thielemans W, Vander BB (2014) Recycling of polymers: a review. Chemsuschem 7:1579–1593CrossRef Ignatyev IA, Thielemans W, Vander BB (2014) Recycling of polymers: a review. Chemsuschem 7:1579–1593CrossRef
5.
Zurück zum Zitat Fonseca WS, Meng X, Deng D (2015) Trash to treasure: transforming waste polystyrene cups into negative electrode materials for sodium ion batteries. ACS Sustain Chem Eng 3:2153–2159CrossRef Fonseca WS, Meng X, Deng D (2015) Trash to treasure: transforming waste polystyrene cups into negative electrode materials for sodium ion batteries. ACS Sustain Chem Eng 3:2153–2159CrossRef
6.
Zurück zum Zitat Luo W, Zhao T, Li Y et al (2016) A micelle fusion–aggregation assembly approach to mesoporous carbon materials with rich active sites for ultrasensitive ammonia sensing. J Am Chem Soc 138:12586–12595CrossRef Luo W, Zhao T, Li Y et al (2016) A micelle fusion–aggregation assembly approach to mesoporous carbon materials with rich active sites for ultrasensitive ammonia sensing. J Am Chem Soc 138:12586–12595CrossRef
7.
Zurück zum Zitat Ma J, Ren Y, Zhou X et al (2018) Pt nanoparticles sensitized ordered mesoporous WO3 semiconductor: gas sensing performance and mechanism study. Adv Func Mater 28:1705268–1705280CrossRef Ma J, Ren Y, Zhou X et al (2018) Pt nanoparticles sensitized ordered mesoporous WO3 semiconductor: gas sensing performance and mechanism study. Adv Func Mater 28:1705268–1705280CrossRef
8.
Zurück zum Zitat Zhu Y, Zhao Y, Ma J et al (2017) Mesoporous tungsten oxides with crystalline framework for highly sensitive and selective detection of food borne pathogens. J Am Chem Soc 139:10365–10373CrossRef Zhu Y, Zhao Y, Ma J et al (2017) Mesoporous tungsten oxides with crystalline framework for highly sensitive and selective detection of food borne pathogens. J Am Chem Soc 139:10365–10373CrossRef
9.
Zurück zum Zitat Ren Y, Zhou X, Luo W et al (2016) Amphiphilic block copolymer templated synthesis of mesoporous indium oxides with nanosheet-assembled pore walls. Chem Mater 28:7997–8005CrossRef Ren Y, Zhou X, Luo W et al (2016) Amphiphilic block copolymer templated synthesis of mesoporous indium oxides with nanosheet-assembled pore walls. Chem Mater 28:7997–8005CrossRef
10.
Zurück zum Zitat Wang C, Wang F, Liu Z et al (2017) N-doped carbon hollow microspheres for metal-free quasi-solid-state full sodium-ion capacitors. Nano Energy 41:674–680CrossRef Wang C, Wang F, Liu Z et al (2017) N-doped carbon hollow microspheres for metal-free quasi-solid-state full sodium-ion capacitors. Nano Energy 41:674–680CrossRef
11.
Zurück zum Zitat Yue Q, Li J, Zhang Y et al (2017) Plasmolysis-inspired nanoengineering of functional Yolk-Shell microspheres with magnetic core and mesoporous silica shell. J Am Chem Soc 139:15486–15493CrossRef Yue Q, Li J, Zhang Y et al (2017) Plasmolysis-inspired nanoengineering of functional Yolk-Shell microspheres with magnetic core and mesoporous silica shell. J Am Chem Soc 139:15486–15493CrossRef
12.
Zurück zum Zitat Zhou J, Zhang Z, Wei X et al (2015) Nitrogen-doped hierarchical porous carbon materials prepared from meta-aminophenol formaldehyde resin for supercapacitor with high rate performance. Electrochim Acta 153:68–75CrossRef Zhou J, Zhang Z, Wei X et al (2015) Nitrogen-doped hierarchical porous carbon materials prepared from meta-aminophenol formaldehyde resin for supercapacitor with high rate performance. Electrochim Acta 153:68–75CrossRef
13.
Zurück zum Zitat Kim BH, Yang KS (2013) Enhanced electrical capacitance of porous carbon nanofibers derived from polyacrylonitrile and boron trioxide. Electrochim Acta 88:597–603CrossRef Kim BH, Yang KS (2013) Enhanced electrical capacitance of porous carbon nanofibers derived from polyacrylonitrile and boron trioxide. Electrochim Acta 88:597–603CrossRef
14.
Zurück zum Zitat Tanoğlu M, Ergün Y (2007) Porous nanocomposites prepared from layered clay and PMMA [poly(methyl methacrylate)]. Compos A Appl Sci Manuf 38:318–322CrossRef Tanoğlu M, Ergün Y (2007) Porous nanocomposites prepared from layered clay and PMMA [poly(methyl methacrylate)]. Compos A Appl Sci Manuf 38:318–322CrossRef
15.
Zurück zum Zitat Pol VG, Thackeray MM (2011) Spherical carbon particles and carbon nanotubes prepared by autogenic reactions: evaluation as anodes in lithium electrochemical cells. Energy Environ Sci 4:1904–1912CrossRef Pol VG, Thackeray MM (2011) Spherical carbon particles and carbon nanotubes prepared by autogenic reactions: evaluation as anodes in lithium electrochemical cells. Energy Environ Sci 4:1904–1912CrossRef
16.
Zurück zum Zitat Gong J, Liu J, Chen X et al (2014) Converting real-world mixed waste plastics into porous carbon nanosheets with excellent performance in the adsorption of an organic dye from wastewater. J Mater Chem A 3:341–351CrossRef Gong J, Liu J, Chen X et al (2014) Converting real-world mixed waste plastics into porous carbon nanosheets with excellent performance in the adsorption of an organic dye from wastewater. J Mater Chem A 3:341–351CrossRef
17.
Zurück zum Zitat Chung YH, Jou S (2005) Carbon nanotubes from catalytic pyrolysis of polypropylene. Mater Chem Phys 92:256–259CrossRef Chung YH, Jou S (2005) Carbon nanotubes from catalytic pyrolysis of polypropylene. Mater Chem Phys 92:256–259CrossRef
18.
Zurück zum Zitat Jiang G, Liu J, Jiang Z et al (2014) Striking influence of chain structure of polyethylene on the formation of cup-stacked carbon nanotubes/carbon nanofibers under the combined catalysis of CuBr and NiO. Appl Catal B 147:592–601CrossRef Jiang G, Liu J, Jiang Z et al (2014) Striking influence of chain structure of polyethylene on the formation of cup-stacked carbon nanotubes/carbon nanofibers under the combined catalysis of CuBr and NiO. Appl Catal B 147:592–601CrossRef
19.
Zurück zum Zitat Liu Y, Qian J, Wang J (2000) Pyrolysis of polystyrene waste in a fluidized-bed reactor to obtain styrene monomer and gasoline fraction. Fuel Process Technol 63:45–55CrossRef Liu Y, Qian J, Wang J (2000) Pyrolysis of polystyrene waste in a fluidized-bed reactor to obtain styrene monomer and gasoline fraction. Fuel Process Technol 63:45–55CrossRef
21.
Zurück zum Zitat Chen AB, Li YT, Yu YF et al (2016) Synthesis of hollow mesoporous carbon spheres via “dissolution-capture” method for effective phenol adsorption. Carbon 103:157–162CrossRef Chen AB, Li YT, Yu YF et al (2016) Synthesis of hollow mesoporous carbon spheres via “dissolution-capture” method for effective phenol adsorption. Carbon 103:157–162CrossRef
22.
Zurück zum Zitat Watanabe R, Yokoi T, Kobayashi E et al (2011) Extension of size of monodisperse silica nanospheres and their well-ordered assembly. J Colloid Interface Sci 360:1–7CrossRef Watanabe R, Yokoi T, Kobayashi E et al (2011) Extension of size of monodisperse silica nanospheres and their well-ordered assembly. J Colloid Interface Sci 360:1–7CrossRef
23.
Zurück zum Zitat Zhang J, Zhang W, Han M et al (2018) One pot synthesis of nitrogen-doped hierarchical porous carbon derived from phenolic formaldehyde resin with sodium citrate as activation agent for supercapacitors. J Mater Sci Mater Electron 29:4639–4648CrossRef Zhang J, Zhang W, Han M et al (2018) One pot synthesis of nitrogen-doped hierarchical porous carbon derived from phenolic formaldehyde resin with sodium citrate as activation agent for supercapacitors. J Mater Sci Mater Electron 29:4639–4648CrossRef
24.
Zurück zum Zitat You C, Liao S, Qiao X et al (2014) Conversion of polystyrene foam to a high-performance doped carbon catalyst with ultrahigh surface area and hierarchical porous structures for oxygen reduction. J Mater Chem A 2:12240–12246CrossRef You C, Liao S, Qiao X et al (2014) Conversion of polystyrene foam to a high-performance doped carbon catalyst with ultrahigh surface area and hierarchical porous structures for oxygen reduction. J Mater Chem A 2:12240–12246CrossRef
25.
Zurück zum Zitat Zeng Q, Wu D, Zou C et al (2010) Template-free fabrication of hierarchical porous carbon based on intra-/inter-sphere crosslinking of monodisperse styrene-divinylbenzene copolymer nanospheres. Chem Commun 46:5927–5929CrossRef Zeng Q, Wu D, Zou C et al (2010) Template-free fabrication of hierarchical porous carbon based on intra-/inter-sphere crosslinking of monodisperse styrene-divinylbenzene copolymer nanospheres. Chem Commun 46:5927–5929CrossRef
26.
Zurück zum Zitat Hao P, Zhao Z, Tian J et al (2014) Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode. Nanoscale 6:12120–12129CrossRef Hao P, Zhao Z, Tian J et al (2014) Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode. Nanoscale 6:12120–12129CrossRef
27.
Zurück zum Zitat Wang Q, Yan J, Wang Y et al (2014) Three-dimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors. Carbon 67:119–127CrossRef Wang Q, Yan J, Wang Y et al (2014) Three-dimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors. Carbon 67:119–127CrossRef
28.
Zurück zum Zitat Zhao Q, Wang X, Wu C et al (2014) Supercapacitive performance of hierarchical porous carbon microspheres prepared by simple one-pot method. J Power Sources 254:10–17CrossRef Zhao Q, Wang X, Wu C et al (2014) Supercapacitive performance of hierarchical porous carbon microspheres prepared by simple one-pot method. J Power Sources 254:10–17CrossRef
29.
Zurück zum Zitat Xu F, Cai R, Zeng Q et al (2011) Fast ion transport and high capacitance of polystyrene-based hierarchical porous carbon electrode material for supercapacitors. J Mater Chem 21:1970–1976CrossRef Xu F, Cai R, Zeng Q et al (2011) Fast ion transport and high capacitance of polystyrene-based hierarchical porous carbon electrode material for supercapacitors. J Mater Chem 21:1970–1976CrossRef
30.
Zurück zum Zitat Fan T, Zeng W, Niu Q et al (2015) Fabrication of high-quality graphene oxide nanoscrolls and application in supercapacitor. Nanoscale Res Lett 10:192–200CrossRef Fan T, Zeng W, Niu Q et al (2015) Fabrication of high-quality graphene oxide nanoscrolls and application in supercapacitor. Nanoscale Res Lett 10:192–200CrossRef
31.
Zurück zum Zitat Lv LP, Wu ZS, Chen L et al (2015) Precursor-controlled and template-free synthesis of nitrogen-doped carbon nanoparticles for supercapacitors. RSC Adv 5:50063–50069CrossRef Lv LP, Wu ZS, Chen L et al (2015) Precursor-controlled and template-free synthesis of nitrogen-doped carbon nanoparticles for supercapacitors. RSC Adv 5:50063–50069CrossRef
32.
Zurück zum Zitat Gamby J, Taberna PL, Simon P et al (2001) Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J Power Sources 101:109–116CrossRef Gamby J, Taberna PL, Simon P et al (2001) Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J Power Sources 101:109–116CrossRef
33.
Zurück zum Zitat Zheng X, Lv W, Tao Y et al (2014) Oriented and interlinked porous carbon nanosheets with an extraordinary capacitive performance. Chem Mater 26:6896–6903CrossRef Zheng X, Lv W, Tao Y et al (2014) Oriented and interlinked porous carbon nanosheets with an extraordinary capacitive performance. Chem Mater 26:6896–6903CrossRef
34.
Zurück zum Zitat Luo G, Huang H, Lei C et al (2016) Facile synthesis of porous graphene as binder-free electrode for supercapacitor application. Appl Surf Sci 366:46–52CrossRef Luo G, Huang H, Lei C et al (2016) Facile synthesis of porous graphene as binder-free electrode for supercapacitor application. Appl Surf Sci 366:46–52CrossRef
35.
Zurück zum Zitat Yu D, Dai L (2009) Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J Phys Chem Lett 1:467–470CrossRef Yu D, Dai L (2009) Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J Phys Chem Lett 1:467–470CrossRef
36.
Zurück zum Zitat Chen XY, Chen C, Zhang Z et al (2013) Nitrogen-doped porous carbon for supercapacitor with long-term electrochemical stability. J Power Sources 230:50–58CrossRef Chen XY, Chen C, Zhang Z et al (2013) Nitrogen-doped porous carbon for supercapacitor with long-term electrochemical stability. J Power Sources 230:50–58CrossRef
37.
Zurück zum Zitat Shao JQ, Ma FW, Wu G et al (2017) In-situ MgO (CaCO3) templating coupled with KOH activation strategy for high yield preparation of various porous carbons as supercapacitor electrode materials. Chem Eng J 321:301–313CrossRef Shao JQ, Ma FW, Wu G et al (2017) In-situ MgO (CaCO3) templating coupled with KOH activation strategy for high yield preparation of various porous carbons as supercapacitor electrode materials. Chem Eng J 321:301–313CrossRef
38.
Zurück zum Zitat Qu S, Wan J, Dai C et al (2018) Promising as high-performance supercapacitor electrode materials porous carbons derived from biological lotus leaf. J Alloy Compd 751:107–116CrossRef Qu S, Wan J, Dai C et al (2018) Promising as high-performance supercapacitor electrode materials porous carbons derived from biological lotus leaf. J Alloy Compd 751:107–116CrossRef
Metadaten
Titel
Porous carbon derived from waste polystyrene foam for supercapacitor
verfasst von
Yixin Zhang
Zhimin Shen
Yifeng Yu
Lei Liu
Guoxu Wang
Aibing Chen
Publikationsdatum
04.06.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 17/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2513-z

Weitere Artikel der Ausgabe 17/2018

Journal of Materials Science 17/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.