Skip to main content

2017 | OriginalPaper | Buchkapitel

6. Porous Carbons for Hydrogen Storage

verfasst von : Mathieu Bosch, Hong-Cai Zhou

Erschienen in: Nanostructured Materials for Next-Generation Energy Storage and Conversion

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Porous carbon-based materials are promising candidates as adsorbents to increase the gravimetric and volumetric uptake of hydrogen at cryogenic temperatures and moderate pressures. In most cases, this uptake increases linearly with surface area, but strategies to increase uptake beyond that predicted by this “chahine rule,” to increase surface area, and to otherwise improve these materials are discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat B. Panella, M. Hirscher, S. Roth, Hydrogen adsorption in different carbon nanostructures. Carbon 43(10), 2209–2214 (2005) B. Panella, M. Hirscher, S. Roth, Hydrogen adsorption in different carbon nanostructures. Carbon 43(10), 2209–2214 (2005)
2.
Zurück zum Zitat O.K. Farha, I. Eryazici, N.C. Jeong, B.G. Hauser, C.E. Wilmer, A.A. Sarjeant, R.Q. Snurr, S.T. Nguyen, A.Ö. Yazaydın, J.T. Hupp, Metal–organic framework materials with ultrahigh surface areas: is the sky the limit? J. Am. Chem. Soc. 134(36), 15016–15021 (2012) O.K. Farha, I. Eryazici, N.C. Jeong, B.G. Hauser, C.E. Wilmer, A.A. Sarjeant, R.Q. Snurr, S.T. Nguyen, A.Ö. Yazaydın, J.T. Hupp, Metal–organic framework materials with ultrahigh surface areas: is the sky the limit? J. Am. Chem. Soc. 134(36), 15016–15021 (2012)
3.
Zurück zum Zitat S.J. Yang, J.H. Im, H. Nishihara, H. Jung, K. Lee, T. Kyotani, C.R. Park, General relationship between hydrogen adsorption capacities at 77 and 298 K and pore characteristics of the porous adsorbents. J. Phys. Chem. C 116(19), 10529–10540 (2012) S.J. Yang, J.H. Im, H. Nishihara, H. Jung, K. Lee, T. Kyotani, C.R. Park, General relationship between hydrogen adsorption capacities at 77 and 298 K and pore characteristics of the porous adsorbents. J. Phys. Chem. C 116(19), 10529–10540 (2012)
4.
Zurück zum Zitat K. Kaneko, C. Ishii, M. Ruike, H. Kuwabara, Origin of superhigh surface-area and microcrystalline graphitic structures of activated carbons. Carbon 30(7), 1075–1088 (1992) K. Kaneko, C. Ishii, M. Ruike, H. Kuwabara, Origin of superhigh surface-area and microcrystalline graphitic structures of activated carbons. Carbon 30(7), 1075–1088 (1992)
5.
Zurück zum Zitat (a) D.A. Gómez-Gualdrón, P.Z. Moghadam, J.T. Hupp, O.K. Farha, R.Q. Snurr, Application of consistency criteria to calculate BET areas of micro- and mesoporous metal–organic frameworks. J. Am. Chem. Soc. 100, 100–101 (2015); (b) T.C. Wang, W. Bury, D.A. Gómez-Gualdrón, N.A. Vermeulen, J.E. Mondloch, P. Deria, K. Zhang, P.Z. Moghadam, A.A. Sarjeant, R.Q. Snurr, J.F. Stoddart, J.T. Hupp, O.K. Farha, Ultrahigh surface area zirconium MOFs and insights into the applicability of the BET theory. J. Am. Chem. Soc. 137(10), 3585–3591 (2015) (a) D.A. Gómez-Gualdrón, P.Z. Moghadam, J.T. Hupp, O.K. Farha, R.Q. Snurr, Application of consistency criteria to calculate BET areas of micro- and mesoporous metal–organic frameworks. J. Am. Chem. Soc. 100, 100–101 (2015); (b) T.C. Wang, W. Bury, D.A. Gómez-Gualdrón, N.A. Vermeulen, J.E. Mondloch, P. Deria, K. Zhang, P.Z. Moghadam, A.A. Sarjeant, R.Q. Snurr, J.F. Stoddart, J.T. Hupp, O.K. Farha, Ultrahigh surface area zirconium MOFs and insights into the applicability of the BET theory. J. Am. Chem. Soc. 137(10), 3585–3591 (2015)
6.
Zurück zum Zitat D.E. Demirocak, S.S. Srinivasan, M.K. Ram, D.Y. Goswami, E.K. Stefanakos, Volumetric hydrogen sorption measurements – uncertainty error analysis and the importance of thermal equilibration time. Int. J. Hydrogen Energy 38(3), 1469–1477 (2013) D.E. Demirocak, S.S. Srinivasan, M.K. Ram, D.Y. Goswami, E.K. Stefanakos, Volumetric hydrogen sorption measurements – uncertainty error analysis and the importance of thermal equilibration time. Int. J. Hydrogen Energy 38(3), 1469–1477 (2013)
7.
Zurück zum Zitat T. Duren, F. Millange, G. Ferey, K.S. Walton, R.Q. Snurr, Calculating geometric surface areas as a characterization tool for metal-organic frameworks. J. Phys. Chem. C 111(42), 15350–15356 (2007) T. Duren, F. Millange, G. Ferey, K.S. Walton, R.Q. Snurr, Calculating geometric surface areas as a characterization tool for metal-organic frameworks. J. Phys. Chem. C 111(42), 15350–15356 (2007)
8.
Zurück zum Zitat M. Sevilla, R. Mokaya, Energy storage applications of activated carbons: Supercapacitors and hydrogen storage. Energy Environ. Sci. 7(4), 1250–1280 (2014) M. Sevilla, R. Mokaya, Energy storage applications of activated carbons: Supercapacitors and hydrogen storage. Energy Environ. Sci. 7(4), 1250–1280 (2014)
9.
Zurück zum Zitat B. Feng, S.K. Bhatia, Variation of the pore structure of coal chars during gasification. Carbon 41(3), 507–523 (2003) B. Feng, S.K. Bhatia, Variation of the pore structure of coal chars during gasification. Carbon 41(3), 507–523 (2003)
10.
Zurück zum Zitat S. Osswald, C. Portet, Y. Gogotsi, G. Laudisio, J.P. Singer, J.E. Fischer, V.V. Sokolov, J.A. Kukushkina, A.E. Kravchik, Porosity control in nanoporous carbide-derived carbon by oxidation in air and carbon dioxide. J. Solid State Chem. 182(7), 1733–1741 (2009) S. Osswald, C. Portet, Y. Gogotsi, G. Laudisio, J.P. Singer, J.E. Fischer, V.V. Sokolov, J.A. Kukushkina, A.E. Kravchik, Porosity control in nanoporous carbide-derived carbon by oxidation in air and carbon dioxide. J. Solid State Chem. 182(7), 1733–1741 (2009)
11.
Zurück zum Zitat (a) I. Cabria, M.J. Lopez, J.A. Alonso, The optimum average nanopore size for hydrogen storage in carbon nanoporous materials. Carbon 45(13), 2649–2658 (2007); (b) M. Sevilla, P. Valle-Vigon, A.B. Fuertes, N-doped polypyrrole-based porous carbons for CO2 capture. Adv. Funct. Mater. 21(14), 2781–2787 (2011) (a) I. Cabria, M.J. Lopez, J.A. Alonso, The optimum average nanopore size for hydrogen storage in carbon nanoporous materials. Carbon 45(13), 2649–2658 (2007); (b) M. Sevilla, P. Valle-Vigon, A.B. Fuertes, N-doped polypyrrole-based porous carbons for CO2 capture. Adv. Funct. Mater. 21(14), 2781–2787 (2011)
12.
Zurück zum Zitat H.L. Wang, Q.M. Gao, J. Hu, High hydrogen storage capacity of porous carbons prepared by using activated carbon. J. Am. Chem. Soc. 131(20), 7016–7022 (2009) H.L. Wang, Q.M. Gao, J. Hu, High hydrogen storage capacity of porous carbons prepared by using activated carbon. J. Am. Chem. Soc. 131(20), 7016–7022 (2009)
13.
Zurück zum Zitat S.J. Yang, H. Jung, T. Kim, C.R. Park, Recent advances in hydrogen storage technologies based on nanoporous carbon materials. Progr. Nat. Sci. Mater. Int. 22(6), 631–638 (2012) S.J. Yang, H. Jung, T. Kim, C.R. Park, Recent advances in hydrogen storage technologies based on nanoporous carbon materials. Progr. Nat. Sci. Mater. Int. 22(6), 631–638 (2012)
14.
Zurück zum Zitat (a) Y. Liu, J.S. Xue, T. Zheng, J.R. Dahn, Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins. Carbon 34(2), 193–200 (1996); (b) V. Subramanian, C. Luo, A.M. Stephan, K.S. Nahm, S. Thomas, B. Wei, Supercapacitors from activated carbon derived from banana fibers. J. Phys. Chem. C 111(20), 7527–7531 (2007) (a) Y. Liu, J.S. Xue, T. Zheng, J.R. Dahn, Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins. Carbon 34(2), 193–200 (1996); (b) V. Subramanian, C. Luo, A.M. Stephan, K.S. Nahm, S. Thomas, B. Wei, Supercapacitors from activated carbon derived from banana fibers. J. Phys. Chem. C 111(20), 7527–7531 (2007)
15.
Zurück zum Zitat D. Qu, Investigation of hydrogen physisorption active sites on the surface of porous carbonaceous materials. Chem. Eur. J. 14(3), 1040–1046 (2008) D. Qu, Investigation of hydrogen physisorption active sites on the surface of porous carbonaceous materials. Chem. Eur. J. 14(3), 1040–1046 (2008)
16.
Zurück zum Zitat M. Molina-Sabio, F. Rodriguez-Reinoso, Role of chemical activation in the development of carbon porosity. Colloid Surf. A 241(1–3), 15–25 (2004) M. Molina-Sabio, F. Rodriguez-Reinoso, Role of chemical activation in the development of carbon porosity. Colloid Surf. A 241(1–3), 15–25 (2004)
17.
Zurück zum Zitat R. Yang, G. Liu, M. Li, J. Zhang, X. Hao, Preparation and N2, CO2 and H2 adsorption of super activated carbon derived from biomass source hemp (Cannabis sativa L.) stem. Microporous Mesoporous Mater. 158, 108–116 (2012) R. Yang, G. Liu, M. Li, J. Zhang, X. Hao, Preparation and N2, CO2 and H2 adsorption of super activated carbon derived from biomass source hemp (Cannabis sativa L.) stem. Microporous Mesoporous Mater. 158, 108–116 (2012)
18.
Zurück zum Zitat J. Wang, I. Senkovska, S. Kaskel, Q. Liu, Chemically activated fungi-based porous carbons for hydrogen storage. Carbon 75, 372–380 (2014) J. Wang, I. Senkovska, S. Kaskel, Q. Liu, Chemically activated fungi-based porous carbons for hydrogen storage. Carbon 75, 372–380 (2014)
19.
Zurück zum Zitat I. Wróbel-Iwaniec, N. Díez, G. Gryglewicz, Chitosan-based highly activated carbons for hydrogen storage. Int. J. Hydrogen Energy 40(17), 5788–5796 (2015) I. Wróbel-Iwaniec, N. Díez, G. Gryglewicz, Chitosan-based highly activated carbons for hydrogen storage. Int. J. Hydrogen Energy 40(17), 5788–5796 (2015)
20.
Zurück zum Zitat J. Cai, J. Qi, C. Yang, X. Zhao, Poly(vinylidene chloride)-based carbon with ultrahigh microporosity and outstanding performance for CH4 and H2 storage and CO2 capture. ACS Appl. Mater. Interfaces 6(5), 3703–3711 (2014) J. Cai, J. Qi, C. Yang, X. Zhao, Poly(vinylidene chloride)-based carbon with ultrahigh microporosity and outstanding performance for CH4 and H2 storage and CO2 capture. ACS Appl. Mater. Interfaces 6(5), 3703–3711 (2014)
21.
Zurück zum Zitat G. Mercier, A. Klechikov, M. Hedenström, D. Johnels, I.A. Baburin, G. Seifert, R. Mysyk, A.V. Talyzin, Porous graphene oxide/diboronic acid materials structure and hydrogen sorption. J. Phys. Chem. C 119(49), 27179–27191 (2015) G. Mercier, A. Klechikov, M. Hedenström, D. Johnels, I.A. Baburin, G. Seifert, R. Mysyk, A.V. Talyzin, Porous graphene oxide/diboronic acid materials structure and hydrogen sorption. J. Phys. Chem. C 119(49), 27179–27191 (2015)
22.
Zurück zum Zitat D. Krishnan, F. Kim, J. Luo, R. Cruz-Silva, L.J. Cote, H.D. Jang, J. Huang, Energetic graphene oxide: challenges and opportunities. Nano Today 7(2), 137–152 (2012) D. Krishnan, F. Kim, J. Luo, R. Cruz-Silva, L.J. Cote, H.D. Jang, J. Huang, Energetic graphene oxide: challenges and opportunities. Nano Today 7(2), 137–152 (2012)
23.
Zurück zum Zitat S.H. Aboutalebi, S. Aminorroaya-Yamini, I. Nevirkovets, K. Konstantinov, H.K. Liu, Enhanced hydrogen storage in graphene oxide-MWCNTs composite at room temperature. Adv. Energy Mater. 2(12), 1439–1446 (2012) S.H. Aboutalebi, S. Aminorroaya-Yamini, I. Nevirkovets, K. Konstantinov, H.K. Liu, Enhanced hydrogen storage in graphene oxide-MWCNTs composite at room temperature. Adv. Energy Mater. 2(12), 1439–1446 (2012)
24.
Zurück zum Zitat G. Srinivas, Y.W. Zhu, R. Piner, N. Skipper, M. Ellerby, R. Ruoff, Synthesis of graphene-like nanosheets and their hydrogen adsorption capacity. Carbon 48(3), 630–635 (2010) G. Srinivas, Y.W. Zhu, R. Piner, N. Skipper, M. Ellerby, R. Ruoff, Synthesis of graphene-like nanosheets and their hydrogen adsorption capacity. Carbon 48(3), 630–635 (2010)
25.
Zurück zum Zitat S. Gadipelli, Z.X. Guo, Graphene-based materials: synthesis and gas sorption, storage and separation. Prog. Mater. Sci. 69, 1–60 (2015) S. Gadipelli, Z.X. Guo, Graphene-based materials: synthesis and gas sorption, storage and separation. Prog. Mater. Sci. 69, 1–60 (2015)
26.
Zurück zum Zitat A. Klechikov, G. Mercier, T. Sharifi, I.A. Baburin, G. Seifert, A.V. Talyzin, Hydrogen storage in high surface area graphene scaffolds. Chem. Commun. 51(83), 15280–15283 (2015) A. Klechikov, G. Mercier, T. Sharifi, I.A. Baburin, G. Seifert, A.V. Talyzin, Hydrogen storage in high surface area graphene scaffolds. Chem. Commun. 51(83), 15280–15283 (2015)
27.
Zurück zum Zitat S.J. Yang, T. Kim, J.H. Im, Y.S. Kim, K. Lee, H. Jung, C.R. Park, MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity. Chem. Mater. 24(3), 464–470 (2012) S.J. Yang, T. Kim, J.H. Im, Y.S. Kim, K. Lee, H. Jung, C.R. Park, MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity. Chem. Mater. 24(3), 464–470 (2012)
28.
Zurück zum Zitat T. Segakweng, N. Musyoka, J. Ren, P. Crouse, H. Langmi, Comparison of MOF-5- and Cr-MOF-derived carbons for hydrogen storage application. Res. Chem. Intermed. 1–11 (2015) T. Segakweng, N. Musyoka, J. Ren, P. Crouse, H. Langmi, Comparison of MOF-5- and Cr-MOF-derived carbons for hydrogen storage application. Res. Chem. Intermed. 1–11 (2015)
29.
Zurück zum Zitat T.K. Kim, K.J. Lee, J.Y. Cheon, J.H. Lee, S.H. Joo, H.R. Moon, Nanoporous metal oxides with tunable and nanocrystalline frameworks via conversion of metal–organic frameworks. J. Am. Chem. Soc. 135(24), 8940–8946 (2013) T.K. Kim, K.J. Lee, J.Y. Cheon, J.H. Lee, S.H. Joo, H.R. Moon, Nanoporous metal oxides with tunable and nanocrystalline frameworks via conversion of metal–organic frameworks. J. Am. Chem. Soc. 135(24), 8940–8946 (2013)
30.
Zurück zum Zitat W.Q. Wang, D.Q. Yuan, Mesoporous carbon originated from non-permanent porous MOFs for gas storage and CO2/CH4 separation. Sci. Rep-Uk 4 (2014) W.Q. Wang, D.Q. Yuan, Mesoporous carbon originated from non-permanent porous MOFs for gas storage and CO2/CH4 separation. Sci. Rep-Uk 4 (2014)
31.
Zurück zum Zitat M. Hu, J. Reboul, S. Furukawa, N.L. Torad, Q. Ji, P. Srinivasu, K. Ariga, S. Kitagawa, Y. Yamauchi, Direct carbonization of al-based porous coordination polymer for synthesis of nanoporous carbon. J. Am. Chem. Soc. 134(6), 2864–2867 (2012) M. Hu, J. Reboul, S. Furukawa, N.L. Torad, Q. Ji, P. Srinivasu, K. Ariga, S. Kitagawa, Y. Yamauchi, Direct carbonization of al-based porous coordination polymer for synthesis of nanoporous carbon. J. Am. Chem. Soc. 134(6), 2864–2867 (2012)
32.
Zurück zum Zitat W. Xia, B. Qiu, D. Xia, R. Zou, Facile preparation of hierarchically porous carbons from metal-organic gels and their application in energy storage. Sci. Rep-Uk 2013, 3 (1935) W. Xia, B. Qiu, D. Xia, R. Zou, Facile preparation of hierarchically porous carbons from metal-organic gels and their application in energy storage. Sci. Rep-Uk 2013, 3 (1935)
33.
Zurück zum Zitat K. Kongpatpanich, S. Horike, Y. Fujiwara, N. Ogiwara, H. Nishihara, S. Kitagawa, Formation of foam-like microstructural carbon material by carbonization of porous coordination polymers through a ligand-assisted foaming process. Chem-Eur. J. 21(38), 13278–13283 (2015) K. Kongpatpanich, S. Horike, Y. Fujiwara, N. Ogiwara, H. Nishihara, S. Kitagawa, Formation of foam-like microstructural carbon material by carbonization of porous coordination polymers through a ligand-assisted foaming process. Chem-Eur. J. 21(38), 13278–13283 (2015)
34.
Zurück zum Zitat S.J. Yang, T. Kim, K. Lee, Y.S. Kim, J. Yoon, C.R. Park, Solvent evaporation mediated preparation of hierarchically porous metal organic framework-derived carbon with controllable and accessible large-scale porosity. Carbon 71, 294–302 (2014) S.J. Yang, T. Kim, K. Lee, Y.S. Kim, J. Yoon, C.R. Park, Solvent evaporation mediated preparation of hierarchically porous metal organic framework-derived carbon with controllable and accessible large-scale porosity. Carbon 71, 294–302 (2014)
35.
Zurück zum Zitat K. Jayaramulu, K.K.R. Datta, K. Shiva, A.J. Bhattacharyya, M. Eswaramoorthy, T.K. Maji, Controlled synthesis of tunable nanoporous carbons for gas storage and supercapacitor application. Microporous Mesoporous Mater. 206, 127–135 (2015) K. Jayaramulu, K.K.R. Datta, K. Shiva, A.J. Bhattacharyya, M. Eswaramoorthy, T.K. Maji, Controlled synthesis of tunable nanoporous carbons for gas storage and supercapacitor application. Microporous Mesoporous Mater. 206, 127–135 (2015)
36.
Zurück zum Zitat A. Aijaz, J.-K. Sun, P. Pachfule, T. Uchida, Q. Xu, From a metal-organic framework to hierarchical high surface-area hollow octahedral carbon cages. Chem. Commun. 51(73), 13945–13948 (2015) A. Aijaz, J.-K. Sun, P. Pachfule, T. Uchida, Q. Xu, From a metal-organic framework to hierarchical high surface-area hollow octahedral carbon cages. Chem. Commun. 51(73), 13945–13948 (2015)
37.
Zurück zum Zitat G.J. Kubas, Metal-dihydrogen and sigma-bond coordination: the consummate extension of the Dewar-Chatt-Duncanson model for metal-olefin bonding. J. Organomet. Chem. 635(1–2), 37–68 (2001) G.J. Kubas, Metal-dihydrogen and sigma-bond coordination: the consummate extension of the Dewar-Chatt-Duncanson model for metal-olefin bonding. J. Organomet. Chem. 635(1–2), 37–68 (2001)
38.
Zurück zum Zitat Y.R. Liu, D. Li, B.P. Lin, Y. Sun, X.Q. Zhang, H. Yang, Hydrothermal synthesis of Ni-doped hierarchically porous carbon monoliths for hydrogen storage. J. Porous. Mater. 22(6), 1417–1422 (2015) Y.R. Liu, D. Li, B.P. Lin, Y. Sun, X.Q. Zhang, H. Yang, Hydrothermal synthesis of Ni-doped hierarchically porous carbon monoliths for hydrogen storage. J. Porous. Mater. 22(6), 1417–1422 (2015)
39.
Zurück zum Zitat V.B. Parambhath, R. Nagar, K. Sethupathi, S. Ramaprabhu, Investigation of spillover mechanism in palladium decorated hydrogen exfoliated functionalized graphene. J. Phys. Chem. C 115(31), 15679–15685 (2011) V.B. Parambhath, R. Nagar, K. Sethupathi, S. Ramaprabhu, Investigation of spillover mechanism in palladium decorated hydrogen exfoliated functionalized graphene. J. Phys. Chem. C 115(31), 15679–15685 (2011)
40.
Zurück zum Zitat H.B. Aiyappa, P. Pachfule, R. Banerjee, S. Kurungot, Porous carbons from nonporous MOFs: influence of ligand characteristics on intrinsic properties of end carbon. Cryst. Growth Des. 13(10), 4195–4199 (2013) H.B. Aiyappa, P. Pachfule, R. Banerjee, S. Kurungot, Porous carbons from nonporous MOFs: influence of ligand characteristics on intrinsic properties of end carbon. Cryst. Growth Des. 13(10), 4195–4199 (2013)
41.
Zurück zum Zitat B.P. Vinayan, K. Sethupathi, S. Ramaprabhu, Facile synthesis of triangular shaped palladium nanoparticles decorated nitrogen doped graphene and their catalytic study for renewable energy applications. Int. J. Hydrogen Energy 38(5), 2240–2250 (2013) B.P. Vinayan, K. Sethupathi, S. Ramaprabhu, Facile synthesis of triangular shaped palladium nanoparticles decorated nitrogen doped graphene and their catalytic study for renewable energy applications. Int. J. Hydrogen Energy 38(5), 2240–2250 (2013)
42.
Zurück zum Zitat Y. Wang, J. Liu, K. Wang, T. Chen, X. Tan, C.M. Li, Hydrogen storage in Ni–B nanoalloy-doped 2D graphene. Int. J. Hydrogen Energ 36(20), 12950–12954 (2011) Y. Wang, J. Liu, K. Wang, T. Chen, X. Tan, C.M. Li, Hydrogen storage in Ni–B nanoalloy-doped 2D graphene. Int. J. Hydrogen Energ 36(20), 12950–12954 (2011)
43.
Zurück zum Zitat Y. Wang, C.X. Guo, X. Wang, C. Guan, H. Yang, K. Wang, C.M. Li, Hydrogen storage in a Ni-B nanoalloy-doped three-dimensional graphene material. Energy Environ. Sci. 4(1), 195–200 (2011) Y. Wang, C.X. Guo, X. Wang, C. Guan, H. Yang, K. Wang, C.M. Li, Hydrogen storage in a Ni-B nanoalloy-doped three-dimensional graphene material. Energy Environ. Sci. 4(1), 195–200 (2011)
44.
Zurück zum Zitat G.M. Psofogiannakis, T.A. Steriotis, A.B. Bourlinos, E.P. Kouvelos, G.C. Charalambopoulou, A.K. Stubos, G.E. Froudakis, Enhanced hydrogen storage by spillover on metal-doped carbon foam: an experimental and computational study. Nanoscale 3(3), 933–936 (2011) G.M. Psofogiannakis, T.A. Steriotis, A.B. Bourlinos, E.P. Kouvelos, G.C. Charalambopoulou, A.K. Stubos, G.E. Froudakis, Enhanced hydrogen storage by spillover on metal-doped carbon foam: an experimental and computational study. Nanoscale 3(3), 933–936 (2011)
45.
Zurück zum Zitat H. Nishihara, P.-X. Hou, L.-X. Li, M. Ito, M. Uchiyama, T. Kaburagi, A. Ikura, J. Katamura, T. Kawarada, K. Mizuuchi, T. Kyotani, High-pressure hydrogen storage in zeolite-templated carbon. J. Phys. Chem. C 113(8), 3189–3196 (2009) H. Nishihara, P.-X. Hou, L.-X. Li, M. Ito, M. Uchiyama, T. Kaburagi, A. Ikura, J. Katamura, T. Kawarada, K. Mizuuchi, T. Kyotani, High-pressure hydrogen storage in zeolite-templated carbon. J. Phys. Chem. C 113(8), 3189–3196 (2009)
46.
Zurück zum Zitat Z.X. Yang, Y.D. Xia, R. Mokaya, Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials. J. Am. Chem. Soc. 129(6), 1673–1679 (2007) Z.X. Yang, Y.D. Xia, R. Mokaya, Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials. J. Am. Chem. Soc. 129(6), 1673–1679 (2007)
47.
Zurück zum Zitat N. Musyoka, J. Ren, P. Annamalai, H. Langmi, B. North, M. Mathe, D. Bessarabov, Synthesis of a hybrid MIL-101(Cr)/ZTC composite for hydrogen storage applications. Res. Chem. Intermed. 1–9 (2015) N. Musyoka, J. Ren, P. Annamalai, H. Langmi, B. North, M. Mathe, D. Bessarabov, Synthesis of a hybrid MIL-101(Cr)/ZTC composite for hydrogen storage applications. Res. Chem. Intermed. 1–9 (2015)
48.
Zurück zum Zitat E. Masika, R.A. Bourne, T.W. Chamberlain, R. Mokaya, Supercritical CO2 mediated incorporation of pd onto templated carbons: a route to optimizing the pd particle size and hydrogen uptake density. ACS Appl. Mater. Interfaces 5(12), 5639–5647 (2013) E. Masika, R.A. Bourne, T.W. Chamberlain, R. Mokaya, Supercritical CO2 mediated incorporation of pd onto templated carbons: a route to optimizing the pd particle size and hydrogen uptake density. ACS Appl. Mater. Interfaces 5(12), 5639–5647 (2013)
49.
Zurück zum Zitat H. Nishihara, S. Ittisanronnachai, H. Itoi, L.-X. Li, K. Suzuki, U. Nagashima, H. Ogawa, T. Kyotani, M. Ito, Experimental and theoretical studies of hydrogen/deuterium spillover on pt-loaded zeolite-templated carbon. J. Phys. Chem. C 118(18), 9551–9559 (2014) H. Nishihara, S. Ittisanronnachai, H. Itoi, L.-X. Li, K. Suzuki, U. Nagashima, H. Ogawa, T. Kyotani, M. Ito, Experimental and theoretical studies of hydrogen/deuterium spillover on pt-loaded zeolite-templated carbon. J. Phys. Chem. C 118(18), 9551–9559 (2014)
50.
Zurück zum Zitat (a) Q. Zhou, C. Wang, Z. Fu, L. Yuan, X. Yang, Y. Tang, H. Zhang, Hydrogen adsorption on palladium anchored defected graphene with B-doping: a theoretical study. Int. J. Hydrogen Energy 40(6), 2473–2483 (2015); (b) L. Wang, J.A.J. Lachawiec, R.T. Yang, Nanostructured adsorbents for hydrogen storage at ambient temperature: high-pressure measurements and factors influencing hydrogen spillover. RSC Adv. 3(46), 23935–23952 (2013) (a) Q. Zhou, C. Wang, Z. Fu, L. Yuan, X. Yang, Y. Tang, H. Zhang, Hydrogen adsorption on palladium anchored defected graphene with B-doping: a theoretical study. Int. J. Hydrogen Energy 40(6), 2473–2483 (2015); (b) L. Wang, J.A.J. Lachawiec, R.T. Yang, Nanostructured adsorbents for hydrogen storage at ambient temperature: high-pressure measurements and factors influencing hydrogen spillover. RSC Adv. 3(46), 23935–23952 (2013)
51.
Zurück zum Zitat J. Shi, W. Li, D. Li, Synthesis, nickel decoration, and hydrogen adsorption of silica-templated mesoporous carbon material with high surface area. J. Phys. Chem. C 119(41), 23430–23435 (2015) J. Shi, W. Li, D. Li, Synthesis, nickel decoration, and hydrogen adsorption of silica-templated mesoporous carbon material with high surface area. J. Phys. Chem. C 119(41), 23430–23435 (2015)
52.
Zurück zum Zitat (a) G. Yushin, R. Dash, J. Jagiello, J.E. Fischer, Y. Gogotsi, Carbide-derived carbons: effect of pore size on hydrogen uptake and heat of adsorption. Adv. Funct. Mater. 16(17), 2288–2293 (2006); (b) Y. Gogotsi, R.K. Dash, G. Yushin, T. Yildirim, G. Laudisio, J.E. Fischer, Tailoring of nanoscale porosity in carbide-derived carbons for hydrogen storage. J. Am. Chem. Soc. 127(46), 16006–16007 (2005) (a) G. Yushin, R. Dash, J. Jagiello, J.E. Fischer, Y. Gogotsi, Carbide-derived carbons: effect of pore size on hydrogen uptake and heat of adsorption. Adv. Funct. Mater. 16(17), 2288–2293 (2006); (b) Y. Gogotsi, R.K. Dash, G. Yushin, T. Yildirim, G. Laudisio, J.E. Fischer, Tailoring of nanoscale porosity in carbide-derived carbons for hydrogen storage. J. Am. Chem. Soc. 127(46), 16006–16007 (2005)
53.
Zurück zum Zitat H.S. Kim, J.P. Singer, Y. Gogotsi, J.E. Fischer, Molybdenum carbide-derived carbon for hydrogen storage. Microporous Mesoporous Mater. 120(3), 267–271 (2009) H.S. Kim, J.P. Singer, Y. Gogotsi, J.E. Fischer, Molybdenum carbide-derived carbon for hydrogen storage. Microporous Mesoporous Mater. 120(3), 267–271 (2009)
54.
Zurück zum Zitat S.-H. Yeon, I. Knoke, Y. Gogotsi, J.E. Fischer, Enhanced volumetric hydrogen and methane storage capacity of monolithic carbide-derived carbon. Microporous Mesoporous Mater. 131(1–3), 423–428 (2010) S.-H. Yeon, I. Knoke, Y. Gogotsi, J.E. Fischer, Enhanced volumetric hydrogen and methane storage capacity of monolithic carbide-derived carbon. Microporous Mesoporous Mater. 131(1–3), 423–428 (2010)
55.
Zurück zum Zitat M. Sevilla, R. Foulston, R. Mokaya, Superactivated carbide-derived carbons with high hydrogen storage capacity. Energ Environ Sci 3(2), 223–227 (2010) M. Sevilla, R. Foulston, R. Mokaya, Superactivated carbide-derived carbons with high hydrogen storage capacity. Energ Environ Sci 3(2), 223–227 (2010)
56.
Zurück zum Zitat D. Yuan, W. Lu, D. Zhao, H.-C. Zhou, Highly stable porous polymer networks with exceptionally high gas-uptake capacities. Adv. Mater. 23(32), 3723–3725 (2011) D. Yuan, W. Lu, D. Zhao, H.-C. Zhou, Highly stable porous polymer networks with exceptionally high gas-uptake capacities. Adv. Mater. 23(32), 3723–3725 (2011)
57.
Zurück zum Zitat T. Ben, H. Ren, S. Ma, D. Cao, J. Lan, X. Jing, W. Wang, J. Xu, F. Deng, J.M. Simmons, S. Qiu, G. Zhu, Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew. Chem. Int. Ed. 48(50), 9457–9460 (2009) T. Ben, H. Ren, S. Ma, D. Cao, J. Lan, X. Jing, W. Wang, J. Xu, F. Deng, J.M. Simmons, S. Qiu, G. Zhu, Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew. Chem. Int. Ed. 48(50), 9457–9460 (2009)
58.
Zurück zum Zitat L.B. Sun, A.G. Li, X.D. Liu, X.Q. Liu, D.W. Feng, W.G. Lu, D.Q. Yuan, H.C. Zhou, Facile fabrication of cost-effective porous polymer networks for highly selective CO2 capture. J. Mater. Chem. A 3(7), 3252–3256 (2015) L.B. Sun, A.G. Li, X.D. Liu, X.Q. Liu, D.W. Feng, W.G. Lu, D.Q. Yuan, H.C. Zhou, Facile fabrication of cost-effective porous polymer networks for highly selective CO2 capture. J. Mater. Chem. A 3(7), 3252–3256 (2015)
59.
Zurück zum Zitat S. Wu, Y. Liu, G. Yu, J. Guan, C. Pan, Y. Du, X. Xiong, Z. Wang, Facile preparation of dibenzoheterocycle-functional nanoporous polymeric networks with high gas uptake capacities. Macromolecules 47(9), 2875–2882 (2014) S. Wu, Y. Liu, G. Yu, J. Guan, C. Pan, Y. Du, X. Xiong, Z. Wang, Facile preparation of dibenzoheterocycle-functional nanoporous polymeric networks with high gas uptake capacities. Macromolecules 47(9), 2875–2882 (2014)
60.
Zurück zum Zitat Z. Xiang, R. Mercado, J.M. Huck, H. Wang, Z. Guo, W. Wang, D. Cao, M. Haranczyk, B. Smit, Systematic tuning and multifunctionalization of covalent organic polymers for enhanced carbon capture. J. Am. Chem. Soc. 137(41), 13301–13307 (2015) Z. Xiang, R. Mercado, J.M. Huck, H. Wang, Z. Guo, W. Wang, D. Cao, M. Haranczyk, B. Smit, Systematic tuning and multifunctionalization of covalent organic polymers for enhanced carbon capture. J. Am. Chem. Soc. 137(41), 13301–13307 (2015)
61.
Zurück zum Zitat W.G. Lu, Z.W. Wei, D.Q. Yuan, J. Tian, S. Fordham, H.C. Zhou, Rational design and synthesis of porous polymer networks: toward high surface area. Chem. Mater. 26(15), 4589–4597 (2014) W.G. Lu, Z.W. Wei, D.Q. Yuan, J. Tian, S. Fordham, H.C. Zhou, Rational design and synthesis of porous polymer networks: toward high surface area. Chem. Mater. 26(15), 4589–4597 (2014)
62.
Zurück zum Zitat Y. Li, T. Ben, B. Zhang, Y. Fu, S. Qiu, Ultrahigh gas storage both at low and high pressures in KOH-activated carbonized porous aromatic frameworks. Sci. Rep-Uk 3, 2420 (2013) Y. Li, T. Ben, B. Zhang, Y. Fu, S. Qiu, Ultrahigh gas storage both at low and high pressures in KOH-activated carbonized porous aromatic frameworks. Sci. Rep-Uk 3, 2420 (2013)
Metadaten
Titel
Porous Carbons for Hydrogen Storage
verfasst von
Mathieu Bosch
Hong-Cai Zhou
Copyright-Jahr
2017
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-53514-1_6

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.