Skip to main content

2014 | OriginalPaper | Buchkapitel

3. Porous Medium

verfasst von : Hans-Jörg G. Diersch

Erschienen in: FEFLOW

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The processes of flow, mass and heat refer to extensive quantities (such as mass, momentum, energy and entropy), cf. Sect. 2.2.2, which are transported through a spatial domain of interest. This spatial domain is said to behave as a continuum which is occupied by matter for which a continuous distribution can be postulated. The matter may take a number of M aggregate forms or phases α, particularly: solid s, liquid l and gaseous g. It retains their continuity regardless how small volume elements the matter is subdivided in and interior material interfaces or surfaces exist. Any mathematical point we select can be assigned to matter as a physical point of given finite size.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
It denotes a balance statement in its basic conservation formulation.
 
2
It denotes a balance statement in which mass conservation is substituted.
 
3
The equivalence of the area- and volume-averaged fluxes is shown for the interface term A α (ρ ψ) of (3.71), cf. [229]. The volume-averaged flux describes the REV average in the form:
$$\displaystyle{[\langle \rho \rangle _{\alpha }{\overline{\psi }}^{\alpha }(\boldsymbol{{v}}^{\alpha } -\boldsymbol{ W}) -\boldsymbol{ {j}}^{\alpha }] \cdot \boldsymbol{ {n}}^{\mathrm{TB}} = \frac{1} {\mathit{dV}}\Bigl (\int {_{{\mathit{dV}}^{\mathrm{TB}}}\gamma }^{\alpha }[\rho \psi (\boldsymbol{v} -\boldsymbol{ w}) -\boldsymbol{ j}]dv\Bigr ) \cdot \boldsymbol{ {n}}^{\mathrm{TB}}}$$
Let us assume that the interface has a thickness D, the volume integral may be written
$$\displaystyle{ \frac{1} {\mathit{dV}}\int _{-D/2}^{D/2}\Bigl (\int {_{{ \mathit{dS}}^{\mathrm{TB}}}\gamma }^{\alpha }[\rho \psi (\boldsymbol{v} -\boldsymbol{ w}) -\boldsymbol{ j}] \cdot \boldsymbol{ {n}}^{\mathrm{TB}}\mathit{da}\Bigr )dl \approx \frac{D} {\mathit{dV}}\int {_{{\mathit{dS}}^{\mathrm{TB}}}\gamma }^{\alpha }[\rho \psi (\boldsymbol{v} -\boldsymbol{ w}) -\boldsymbol{ j}] \cdot \boldsymbol{ {n}}^{\mathrm{TB}}\mathit{da}}$$
where mean values are used to replace the line integral. With dS = dVD we find finally
$$\displaystyle{[\langle \rho \rangle _{\alpha }{\overline{\psi }}^{\alpha }(\boldsymbol{{v}}^{\alpha } -\boldsymbol{ W}) -\boldsymbol{ {j}}^{\alpha }] \cdot \boldsymbol{ {n}}^{\mathrm{TB}} = \frac{1} {\mathit{dS}}\int {_{d{S}^{\mathrm{TB}}}\gamma }^{\alpha }[\rho \psi (\boldsymbol{v} -\boldsymbol{ w}) -\boldsymbol{ j}] \cdot \boldsymbol{ {n}}^{\mathrm{TB}}\mathit{da}}$$
which corresponds to a α (ρ ψ) in (3.71).
 
4
They represent constitutive relations originally found from the observation that fluxes of extensive quantities (e.g., mass, heat, momentum) are produced by the nonuniform distribution of their state variables (e.g., concentration gradient, temperature gradient, velocity difference). Frequently, a simple proportionality between fluxes and gradients of state variables is postulated using a parameter taken to be a property of the material (e.g., diffusivity, conductivity, friction).
 
5
In index notation we derive (dropping phase indices for the sake of simplicity)
$$\displaystyle{\begin{array}{rcl} \frac{\partial } {\partial x_{j}}\bigl [\varepsilon \tfrac{1} {2}( \frac{\partial v_{i}} {\partial x_{j}} + \frac{\partial v_{j}} {\partial x_{i}})\bigr ] & = & \tfrac{1} {2} \frac{\partial } {\partial x_{j}}\bigl [\frac{\partial (\varepsilon v_{i})} {\partial x_{j}} + \frac{\partial (\varepsilon v_{j})} {\partial x_{i}} - v_{i} \frac{\partial \varepsilon } {\partial x_{j}} - v_{j} \frac{\partial \varepsilon } {\partial x_{i}}\bigr ] \\ & = & \tfrac{1} {2} \frac{{\partial }^{2}(\varepsilon v_{i})} {\partial x_{j}\partial x_{j}} + \tfrac{1} {2} \frac{{\partial }^{2}(\varepsilon v_{j})} {\partial x_{i}\partial x_{j}} -\tfrac{1} {2} \frac{\partial } {\partial x_{j}}\bigl (v_{i} \frac{\partial \varepsilon } {\partial x_{j}}\bigr ) -\tfrac{1} {2} \frac{\partial } {\partial x_{j}}\bigl (v_{j} \frac{\partial \varepsilon } {\partial x_{i}}\bigr ) \\ & = & \tfrac{1} {2} \frac{{\partial }^{2}(\varepsilon v_{i})} {\partial x_{j}\partial x_{j}} + \tfrac{1} {2}\varepsilon \frac{{\partial }^{2}v_{j}} {\partial x_{i}\partial x_{j}} -\tfrac{1} {2}v_{i} \frac{{\partial }^{2}\varepsilon } {\partial x_{j}\partial x_{j}} -\tfrac{1} {2}\bigl ( \frac{\partial v_{i}} {\partial v_{j}} -\frac{\partial v_{j}} {\partial v_{i}}\bigr ) \frac{\partial \varepsilon } {\partial x_{j}} \end{array} }$$
 
6
In 3D Cartesian coordinates, with v 1, v 2 and v 3 denoting the velocity components in the x 1, x 2 and x 3 directions, respectively, and \(v =\Vert \boldsymbol{ {v}}^{fs}\Vert\), we obtain from (3.182), dropping phase indices for convenience
$$\displaystyle{\begin{array}{rcl} D_{\mathrm{mech},11} & = & \beta _{T}v + (\beta _{L} -\beta _{T})\frac{v_{1}^{2}} {v} = \frac{1} {v}{\bigl (\beta _{L}v_{1}^{2} +\beta _{T}v_{2}^{2} +\beta _{T}v_{3}^{2}\bigr )} \\ D_{\mathrm{mech},22} & = & \beta _{T}v + (\beta _{L} -\beta _{T})\frac{v_{2}^{2}} {v} = \frac{1} {v}{\bigl (\beta _{T}v_{1}^{2} +\beta _{L}v_{2}^{2} +\beta _{T}v_{3}^{2}\bigr )} \\ D_{\mathrm{mech},33} & = & \beta _{T}v + (\beta _{L} -\beta _{T})\frac{v_{3}^{2}} {v} = \frac{1} {v}{\bigl (\beta _{T}v_{1}^{2} +\beta _{T}v_{2}^{2} +\beta _{L}v_{3}^{2}\bigr )} \\ D_{\mathrm{mech},12} & = & (\beta _{L} -\beta _{T})\frac{v_{1}v_{2}} {v} = D_{\mathrm{mech},21} \\ D_{\mathrm{mech},13} & = & (\beta _{L} -\beta _{T})\frac{v_{1}v_{3}} {v} = D_{\mathrm{mech},31} \\ D_{\mathrm{mech},23} & = & (\beta _{L} -\beta _{T})\frac{v_{2}v_{3}} {v} = D_{\mathrm{mech},32} \end{array} }$$
 
7
Using calculus manipulations the material derivative of E f with respect to the density ρ f can be alternatively developed for the \(\tfrac{{D{}^{f}\rho }^{f}} {\mathit{Dt}}\) term:
$$\displaystyle{{\frac{\varepsilon _{f}} {\rho }^{f}}{\Bigl ({p}^{f} - {T}^{f} \frac{\partial {p}^{f}} {\partial {T}^{f}}\Bigr )}\frac{{D{}^{f}\rho }^{f}} {\mathit{Dt}} ={ \frac{\varepsilon _{f}{p}^{f}} {\rho }^{f}} \frac{{D{}^{f}\rho }^{f}} {\mathit{Dt}} +\varepsilon _{f}{T{}^{f}\beta }^{f}\frac{{D}^{f}{p}^{f}} {\mathit{Dt}} }$$
where the thermal expansion coefficient (3.197), \({\beta }^{f} = -(1{/\rho }^{f})({\partial \rho }^{f}/\partial {T}^{f})\), is inserted.
 
8
It can be alternatively expressed by introducing the relationships (3.95) and (3.100) of the solid displacement \(\boldsymbol{{u}}^{s}\):
$$\displaystyle{ \frac{\partial } {\partial t}(\varepsilon {_{s}\rho }^{s}) +\varepsilon { _{s}\rho }^{s}\biggl (\boldsymbol{{m}}^{T} \cdot {\Bigl (\boldsymbol{ L} \cdot \frac{\partial \boldsymbol{{u}}^{s}} {\partial t} \Bigr )}\biggr )} + \nabla (\varepsilon {_{s}\rho }^{s}) \cdot \frac{\partial \boldsymbol{{u}}^{s}} {\partial t} ={\rho }^{s}Q_{s}$$
 
9
Sometimes, the volumetric flux density is simply represented by the so-called Dupuit-Forchheimer relationship [389], which is a bulk flux in the form \(\boldsymbol{v}_{f} =\varepsilon _{f}\boldsymbol{{v}}^{f}\). This quantity has been given various names by different authors (e.g., seepage or filtration velocity). We shall prefer the term Darcy velocity \(\boldsymbol{q}_{f}\) emphasizing the correct relationship (3.240) for the flux.
 
10
While a parallel behavior occurs in most of the natural porous media, there could be a porous-medium structure and orientation, where the heat conduction takes place in series. In this case, the heat flux can pass serially though the solid and the fluid, such that the overall thermal conductivity is a harmonic mean \(\boldsymbol{\varLambda }_{0}^{-1} =\varepsilon {s}^{f}{{(\varLambda }^{f}\boldsymbol{\delta })}^{-1} + (1-\varepsilon ){{(\varLambda }^{s}\boldsymbol{\delta })}^{-1}\). The arithmetic mean and harmonic mean represent upper and lower bounds, respectively, for the overall thermal conductivity \(\boldsymbol{\varLambda }_{0}\). Other, more empirical arrangements for \(\boldsymbol{\varLambda }_{0}\) can be made up for certain porous media as discussed in [305].
 
11
From (3.260) it is \({p}^{l} =\rho _{ 0}^{l}g({h}^{l} - x_{j})\) and with \(\boldsymbol{e} = \nabla x_{j}\) we find \(\nabla {p}^{l} =\rho _{ 0}^{l}g(\nabla {h}^{l} -\boldsymbol{ e})\). Now expanding
$$\displaystyle\begin{array}{rcl}{ \frac{\boldsymbol{k}} {\mu }^{l}} =\underbrace{\mathop{ \frac{\boldsymbol{k}\rho _{0}^{l}g} {\mu _{0}^{l}} }}\limits _{\boldsymbol{{K}}^{l}}\,\underbrace{\mathop{{ \frac{\mu _{0}^{l}} {\mu }^{l}} }}\limits _{f_{\mu }^{l}}\, \frac{1} {\rho _{0}^{l}g} =\boldsymbol{ {K}}^{l}f_{\mu }^{l} \frac{1} {\rho _{0}^{l}g}& & {}\\ \end{array}$$
and inserting into (3.258) with (3.261), we obtain
$$\displaystyle{\boldsymbol{q}_{l} = -k_{r}^{l}\boldsymbol{{K}}^{l}f_{\mu }^{l} \cdot \bigl (\nabla {h}^{l} + \tfrac{{\rho }^{l}-\rho _{ 0}^{l}} {\rho _{0}^{l}} \boldsymbol{e}\bigr )}$$
 
Literatur
12.
Zurück zum Zitat Aris, R.: Vectors, Tensors, and the Basis Equations of Fluid Mechanics. Dover, New York (1962) Aris, R.: Vectors, Tensors, and the Basis Equations of Fluid Mechanics. Dover, New York (1962)
32.
Zurück zum Zitat Baxter, G., Wallace, C.: Changes in volume upon solution in water of the halogen salts of the alkali metals. J. Am. Chem. Soc. 38(1), 70–105 (1916)CrossRef Baxter, G., Wallace, C.: Changes in volume upon solution in water of the halogen salts of the alkali metals. J. Am. Chem. Soc. 38(1), 70–105 (1916)CrossRef
33.
Zurück zum Zitat Bear, J.: Dynamics of Fluids in Porous Media. American Elsevier, New York (1972) Bear, J.: Dynamics of Fluids in Porous Media. American Elsevier, New York (1972)
34.
Zurück zum Zitat Bear, J.: Hydraulics of Groundwater. McGraw-Hill, New York (1979) Bear, J.: Hydraulics of Groundwater. McGraw-Hill, New York (1979)
37.
Zurück zum Zitat Bear, J., Bachmat, Y.: Introduction to Modeling of Transport Phenomena in Porous Media. Kluwer Academic, Dordrecht (1991)CrossRef Bear, J., Bachmat, Y.: Introduction to Modeling of Transport Phenomena in Porous Media. Kluwer Academic, Dordrecht (1991)CrossRef
38.
Zurück zum Zitat Bear, J., Cheng, A.D.: Modeling Groundwater Flow and Contaminant Transport. Springer, Dordrecht (2010)CrossRef Bear, J., Cheng, A.D.: Modeling Groundwater Flow and Contaminant Transport. Springer, Dordrecht (2010)CrossRef
39.
Zurück zum Zitat Bear, J., Verruijt, A.: Modeling Groundwater Flow and Pollution. D. Reidel, Dordrecht (1987)CrossRef Bear, J., Verruijt, A.: Modeling Groundwater Flow and Pollution. D. Reidel, Dordrecht (1987)CrossRef
49.
Zurück zum Zitat Boussinesq, J.: Théorie analytique de la chaleur, vol. 2. Gauthier-Villars, Paris (1903) Boussinesq, J.: Théorie analytique de la chaleur, vol. 2. Gauthier-Villars, Paris (1903)
59.
Zurück zum Zitat Brown, G.: Henry Darcy and the making of a law. Water Resour. Res. 38(7) (2002). doi:10.1029/2001WR000727 Brown, G.: Henry Darcy and the making of a law. Water Resour. Res. 38(7) (2002). doi:10.1029/2001WR000727
94.
Zurück zum Zitat Coleman, B., Noll, W.: Thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13(1), 167–178 (1963)CrossRef Coleman, B., Noll, W.: Thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13(1), 167–178 (1963)CrossRef
116.
Zurück zum Zitat De Groot, S., Mazur, P.: Non-equilibrium Thermodynamics. Dover, Mincola (1985) De Groot, S., Mazur, P.: Non-equilibrium Thermodynamics. Dover, Mincola (1985)
118.
Zurück zum Zitat De Lemos, M.: Turbulence in porous media – modeling and applications. Elsevier, Amsterdam (2006) De Lemos, M.: Turbulence in porous media – modeling and applications. Elsevier, Amsterdam (2006)
120.
Zurück zum Zitat De Marsily, G.: Quantitative Hydrogeology – Groundwater Hydrology for Engineers. Academic, Orlando (1986) De Marsily, G.: Quantitative Hydrogeology – Groundwater Hydrology for Engineers. Academic, Orlando (1986)
132.
Zurück zum Zitat Diersch, H.J.: Modellierung und numerische Simulation geohydrodynamischer Ttransportprozesse (modeling and numerical simulation of geohydrodynamic transport processes). Ph.D. thesis, Habilitation, Academy of Sciences, Berlin, Germany (1985) Diersch, H.J.: Modellierung und numerische Simulation geohydrodynamischer Ttransportprozesse (modeling and numerical simulation of geohydrodynamic transport processes). Ph.D. thesis, Habilitation, Academy of Sciences, Berlin, Germany (1985)
144.
Zurück zum Zitat Diersch, H.J., Clausnitzer, V., Myrnyy, V., Rosati, R., Schmidt, M., Beruda, H., Ehrnsperger, B., Virgilio, R.: Modeling unsaturated flow in absorbent swelling porous media: Part 1. Theory. Transp. Porous Media 83(3), 437–464 (2010)CrossRef Diersch, H.J., Clausnitzer, V., Myrnyy, V., Rosati, R., Schmidt, M., Beruda, H., Ehrnsperger, B., Virgilio, R.: Modeling unsaturated flow in absorbent swelling porous media: Part 1. Theory. Transp. Porous Media 83(3), 437–464 (2010)CrossRef
147.
Zurück zum Zitat Diersch, H.J., Clausnitzer, V., Myrnyy, V., Rosati, R., Schmidt, M., Beruda, H., Ehrnsperger, B., Virgilio, R.: Modeling unsaturated flow in absorbent swelling porous media: Part 2. Numerical simulation. Transp. Porous Media 86(3), 753–776 (2011)CrossRef Diersch, H.J., Clausnitzer, V., Myrnyy, V., Rosati, R., Schmidt, M., Beruda, H., Ehrnsperger, B., Virgilio, R.: Modeling unsaturated flow in absorbent swelling porous media: Part 2. Numerical simulation. Transp. Porous Media 86(3), 753–776 (2011)CrossRef
157.
Zurück zum Zitat Eringen, A.: Mechanics of Continua, 2nd edn. Krieger, Huntington (1980) Eringen, A.: Mechanics of Continua, 2nd edn. Krieger, Huntington (1980)
160.
Zurück zum Zitat Evans, D., Raffensperger, J.: On the stream function for variable density groundwater flow. Water Resour. Res. 28(8), 2141–2145 (1992)CrossRef Evans, D., Raffensperger, J.: On the stream function for variable density groundwater flow. Water Resour. Res. 28(8), 2141–2145 (1992)CrossRef
186.
Zurück zum Zitat Gartling, D., Hickox, C.: Numerical study of the applicability of the Boussinesq approximation for a fluid-saturated porous medium. Int. J. Numer. Methods Fluids 5(11), 995–1013 (1985)CrossRef Gartling, D., Hickox, C.: Numerical study of the applicability of the Boussinesq approximation for a fluid-saturated porous medium. Int. J. Numer. Methods Fluids 5(11), 995–1013 (1985)CrossRef
204.
Zurück zum Zitat Gray, D., Giorgini, A.: On the validity of the Boussinesq approximation for liquids and gases. Int. J. Heat Mass Transf. 19(5), 545–551 (1976)CrossRef Gray, D., Giorgini, A.: On the validity of the Boussinesq approximation for liquids and gases. Int. J. Heat Mass Transf. 19(5), 545–551 (1976)CrossRef
224.
Zurück zum Zitat Hassanizadeh, S.: Modeling species transport by concentrated brine in aggregated porous media. Transp. Porous Media 3(3), 299–318 (1988) Hassanizadeh, S.: Modeling species transport by concentrated brine in aggregated porous media. Transp. Porous Media 3(3), 299–318 (1988)
229.
Zurück zum Zitat Hassanizadeh, S., Gray, W.: Derivation of conditions describing transport across zones of reduced dynamics within multiphase systems. Water Resour. Res. 25(3), 529–539 (1989)CrossRef Hassanizadeh, S., Gray, W.: Derivation of conditions describing transport across zones of reduced dynamics within multiphase systems. Water Resour. Res. 25(3), 529–539 (1989)CrossRef
233.
Zurück zum Zitat Hassanizadeh, S., Celia, M., Dahle, H.: Dynamic effect in the capillary pressure-saturation relationship and its impacts on unsaturated flow. Vadose Zone J. 1(1), 38–57 (2002) Hassanizadeh, S., Celia, M., Dahle, H.: Dynamic effect in the capillary pressure-saturation relationship and its impacts on unsaturated flow. Vadose Zone J. 1(1), 38–57 (2002)
255.
Zurück zum Zitat Holzbecher, E.: Modeling Density-Driven Flow in Porous Media. Springer, Berlin (1998)CrossRef Holzbecher, E.: Modeling Density-Driven Flow in Porous Media. Springer, Berlin (1998)CrossRef
294.
Zurück zum Zitat Jourde, H., Cornaton, F., Pistre, S., Bidaux, P.: Flow behavior in a dual fracture network. J. Hydrol. 266(1–2), 99–119 (2002)CrossRef Jourde, H., Cornaton, F., Pistre, S., Bidaux, P.: Flow behavior in a dual fracture network. J. Hydrol. 266(1–2), 99–119 (2002)CrossRef
296.
Zurück zum Zitat Kakaç, S., Kilkiş, B., Kulacki, F., Arinç, F. (eds.): Convective Heat and Mass Transfer in Porous Media. NATO ASI Series. Kluwer Academic, Dordrecht (1991) Kakaç, S., Kilkiş, B., Kulacki, F., Arinç, F. (eds.): Convective Heat and Mass Transfer in Porous Media. NATO ASI Series. Kluwer Academic, Dordrecht (1991)
305.
Zurück zum Zitat Kaviany, M.: Principles of Heat Transfer in Porous Media, 2nd edn. Springer, New York (1995)CrossRef Kaviany, M.: Principles of Heat Transfer in Porous Media, 2nd edn. Springer, New York (1995)CrossRef
318.
Zurück zum Zitat Kolditz, O., Ratke, R., Diersch, H.J., Zielke, W.: Coupled groundwater flow and transport: 1. Verification of variable-density flow and transport models. Adv. Water Resour. 21(1), 27–46 (1998)CrossRef Kolditz, O., Ratke, R., Diersch, H.J., Zielke, W.: Coupled groundwater flow and transport: 1. Verification of variable-density flow and transport models. Adv. Water Resour. 21(1), 27–46 (1998)CrossRef
343.
Zurück zum Zitat Lever, D., Jackson, C.: On the equations for the flow of concentrated salt solution through a porous medium. Technical report, AERE-R 11765, Harwell Laboratory, Oxfordshire (1985) Lever, D., Jackson, C.: On the equations for the flow of concentrated salt solution through a porous medium. Technical report, AERE-R 11765, Harwell Laboratory, Oxfordshire (1985)
344.
Zurück zum Zitat Lewis, R., Schrefler, B.: The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, 2nd edn. Wiley, Chichester (1998) Lewis, R., Schrefler, B.: The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, 2nd edn. Wiley, Chichester (1998)
371.
Zurück zum Zitat Mercer, J., Pinder, G.: Finite element analysis of hydrothermal systems. In: Oden, J., et al. (eds.) Finite Element Methods in Flow Problems. Proceedings of 1st Symposium, Swansea, pp. 401–414. University of Alabama Press, Huntsville (1974) Mercer, J., Pinder, G.: Finite element analysis of hydrothermal systems. In: Oden, J., et al. (eds.) Finite Element Methods in Flow Problems. Proceedings of 1st Symposium, Swansea, pp. 401–414. University of Alabama Press, Huntsville (1974)
375.
Zurück zum Zitat Mirnyy, V., Clausnitzer, V., Diersch, H.J., Rosati, R., Schmidt, M., Beruda, H.: Wicking in absorbent swelling porous materials (Chapter 7). In: Masoodi, R., Pillai, K. (eds.) Wicking in Porous Materials, pp. 161–200. CRC/Taylor and Francis, Boca Raton (2013) Mirnyy, V., Clausnitzer, V., Diersch, H.J., Rosati, R., Schmidt, M., Beruda, H.: Wicking in absorbent swelling porous materials (Chapter 7). In: Masoodi, R., Pillai, K. (eds.) Wicking in Porous Materials, pp. 161–200. CRC/Taylor and Francis, Boca Raton (2013)
389.
Zurück zum Zitat Nield, D., Bejan, A.: Convection in Porous Media, 3rd edn. Springer, New York (2006) Nield, D., Bejan, A.: Convection in Porous Media, 3rd edn. Springer, New York (2006)
393.
Zurück zum Zitat Oberbeck, A.: Über die Wärmeleitung der Flüssigkeiten bei Berücksichtigung der Strömung infolge von Temperaturdifferenzen (on the thermal conduction of liquids with regard to flows due to temperature differences). Ann. Phys. Chem. 7, 271–292 (1879) Oberbeck, A.: Über die Wärmeleitung der Flüssigkeiten bei Berücksichtigung der Strömung infolge von Temperaturdifferenzen (on the thermal conduction of liquids with regard to flows due to temperature differences). Ann. Phys. Chem. 7, 271–292 (1879)
394.
Zurück zum Zitat Ochoa-Tapia, J., Whitaker, S.: Momentum transfer at the boundary between a porous medium and a homogeneous fluid – I. Theoretical development. Int. J. Heat Mass Transf. 38(14), 2635–2646 (1995)CrossRef Ochoa-Tapia, J., Whitaker, S.: Momentum transfer at the boundary between a porous medium and a homogeneous fluid – I. Theoretical development. Int. J. Heat Mass Transf. 38(14), 2635–2646 (1995)CrossRef
395.
Zurück zum Zitat OECD: The international INTRAVAL project, Phase 1, Summary report. Technical report, OECD, Paris (1994) OECD: The international INTRAVAL project, Phase 1, Summary report. Technical report, OECD, Paris (1994)
409.
Zurück zum Zitat Panton, R.: Incompressible Flow. Wiley, New York (1996) Panton, R.: Incompressible Flow. Wiley, New York (1996)
422.
Zurück zum Zitat Pinder, G., Gray, W.: Essentials of Multiphase Flow and Transport in Porous Media. Wiley, Hoboken (2008)CrossRef Pinder, G., Gray, W.: Essentials of Multiphase Flow and Transport in Porous Media. Wiley, Hoboken (2008)CrossRef
440.
Zurück zum Zitat Richards, L.: Capillary conduction of liquids through porous media. Physics 1, 318–333 (1931)CrossRef Richards, L.: Capillary conduction of liquids through porous media. Physics 1, 318–333 (1931)CrossRef
460.
Zurück zum Zitat Scheidegger, A.: General theory of dispersion in porous media. J. Geophys. Res. 66(10), 3273–3278 (1961)CrossRef Scheidegger, A.: General theory of dispersion in porous media. J. Geophys. Res. 66(10), 3273–3278 (1961)CrossRef
505.
Zurück zum Zitat Tam, C.: The drag on a cloud of spherical particles in low Reynold number flow. J. Fluid Mech. 38(3), 537–546 (1969)CrossRef Tam, C.: The drag on a cloud of spherical particles in low Reynold number flow. J. Fluid Mech. 38(3), 537–546 (1969)CrossRef
521.
Zurück zum Zitat Truesdell, C., Toupin, R.: Principles of classical mechanics and field theory. In: Flügge, S. (ed.) Handbuch der Physik, vol. III/1, pp. 700–704. Springer, Berlin (1960) Truesdell, C., Toupin, R.: Principles of classical mechanics and field theory. In: Flügge, S. (ed.) Handbuch der Physik, vol. III/1, pp. 700–704. Springer, Berlin (1960)
534.
Zurück zum Zitat Vafai, K.: Handbook of Porous Media, 2nd edn. Taylor and Francis, Boca Raton (2005)CrossRef Vafai, K.: Handbook of Porous Media, 2nd edn. Taylor and Francis, Boca Raton (2005)CrossRef
562.
Zurück zum Zitat Whitaker, S.: The Forchheimer equation: a theoretical development. Transp. Porous Media 25(1), 27–61 (1996)CrossRef Whitaker, S.: The Forchheimer equation: a theoretical development. Transp. Porous Media 25(1), 27–61 (1996)CrossRef
Metadaten
Titel
Porous Medium
verfasst von
Hans-Jörg G. Diersch
Copyright-Jahr
2014
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-38739-5_3