Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 1-2/2020

17.02.2020 | ORIGINAL ARTICLE

Pose-dependent modal behavior of a milling robot in service

verfasst von: Asia Maamar, Vincent Gagnol, Thien-Phu Le, Laurent Sabourin

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 1-2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The introduction of industrial robots in the machining field represents a large saving in cost and time, given their advantages in terms of high flexibility in a large workspace and the complex machining operations that they can perform compared to a CNC machine tool. However, machining robots are significantly less rigid than machine tools, and present more variability in their dynamic behavior within their workspaces than CNC machine tools. Their considerable lack of rigidity is still a major restriction for precision tasks, and attaining the precision required of a machining robot remains a challenging issue. Thus, a modal parameters analysis of machining robots under real machining conditions, is crucial for a reliable evaluation of its dynamic behavior. Robot configurations can then be adapted to ensure stability conditions along the machining trajectory. The main innovation of this paper is the modal parameter monitoring of a machining robot, in machining conditions, as regards its position and wrist configuration within its workspace, for a more accurate and reliable control of its dynamic behavior. Modal parameters are identified during machining operations using the transmissibility function–based (TFB) method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abele E, Eberhard, Weigold M, Rothenbucher S, Tefan (2017) Modeling and identification of an industrial robot for machining applications. CIRP Ann 56:387–390CrossRef Abele E, Eberhard, Weigold M, Rothenbucher S, Tefan (2017) Modeling and identification of an industrial robot for machining applications. CIRP Ann 56:387–390CrossRef
2.
Zurück zum Zitat Lejun C, Melkote S-N (2017) Effect of robot dynamics on the machining forces in robotic milling. Procedia Manuf 10:486–496CrossRef Lejun C, Melkote S-N (2017) Effect of robot dynamics on the machining forces in robotic milling. Procedia Manuf 10:486–496CrossRef
3.
Zurück zum Zitat Ma L, Melkote SN, Morehouse JB, Castle JB, Fonda JW, Johnson MA (2012) Thin-film PVDF sensor-based monitoring of cutting forces in peripheral end milling. J Dyn Syst Measur Control, 134 Ma L, Melkote SN, Morehouse JB, Castle JB, Fonda JW, Johnson MA (2012) Thin-film PVDF sensor-based monitoring of cutting forces in peripheral end milling. J Dyn Syst Measur Control, 134
4.
Zurück zum Zitat Portman VT, Chapsky VS, Shneor Y, Ayalon E (2015) Machine stiffness rating: characterization and evaluation in design stage. Procedia CIRP 36:111–116CrossRef Portman VT, Chapsky VS, Shneor Y, Ayalon E (2015) Machine stiffness rating: characterization and evaluation in design stage. Procedia CIRP 36:111–116CrossRef
5.
Zurück zum Zitat Bisu, Claudiu F, Knevez J-Y, Darnis P, Laheurte R, Gérard A (2009) New method to characterize a machining system: application in turning. Int J Mater Form 2:93–105CrossRef Bisu, Claudiu F, Knevez J-Y, Darnis P, Laheurte R, Gérard A (2009) New method to characterize a machining system: application in turning. Int J Mater Form 2:93–105CrossRef
6.
Zurück zum Zitat Maamar A, Bouzgarrou B-C, Gagnol V, Fathallah R (2017) Time domain stability analysis for machining processes. Adv Acoust Vib, 77–88 Maamar A, Bouzgarrou B-C, Gagnol V, Fathallah R (2017) Time domain stability analysis for machining processes. Adv Acoust Vib, 77–88
7.
Zurück zum Zitat Mousavi S, Gagnol V, Bouzgarrou B-C, Ray P (2018) Stability optimization in robotic milling through the control of functional redundanciess. Robot Comput-Integr Manuf, 181–192CrossRef Mousavi S, Gagnol V, Bouzgarrou B-C, Ray P (2018) Stability optimization in robotic milling through the control of functional redundanciess. Robot Comput-Integr Manuf, 181–192CrossRef
8.
Zurück zum Zitat Mejri S, Gagnol V, Le T-P, Ray P, Paultre P (2016) Dynamic characterization of machining robot and stability analysis. Int J Adv Manuf Technol 82:351–359CrossRef Mejri S, Gagnol V, Le T-P, Ray P, Paultre P (2016) Dynamic characterization of machining robot and stability analysis. Int J Adv Manuf Technol 82:351–359CrossRef
9.
Zurück zum Zitat Chen C, Pengu F, Yan R, Fan Z, Li Y, Wei D (2018) Posture-dependent stability prediction of a milling industrial robot based on inverse distance weighted method. Procedia Manuf 17:993–1000CrossRef Chen C, Pengu F, Yan R, Fan Z, Li Y, Wei D (2018) Posture-dependent stability prediction of a milling industrial robot based on inverse distance weighted method. Procedia Manuf 17:993–1000CrossRef
10.
Zurück zum Zitat Bisu C, Cherif M, Gerard A, K’nevez J-Y (2012) Dynamic behavior analysis for a six axis industrial machining robot. Adv Mater Res 423:65–76CrossRef Bisu C, Cherif M, Gerard A, K’nevez J-Y (2012) Dynamic behavior analysis for a six axis industrial machining robot. Adv Mater Res 423:65–76CrossRef
11.
Zurück zum Zitat Sabourin L, Subrin K, Cousturier R, Gogu G, Mezouar Y (2015) Redundancy-based optimization approach to optimize robotic cell behaviour: application to robotic machining. Industr Robot: Int J 42:167–178CrossRef Sabourin L, Subrin K, Cousturier R, Gogu G, Mezouar Y (2015) Redundancy-based optimization approach to optimize robotic cell behaviour: application to robotic machining. Industr Robot: Int J 42:167–178CrossRef
12.
Zurück zum Zitat Orlowitz E, Brandt A (2017) Comparison of experimental and operational modal analysis on a laboratory test plate. Measurement 102:121–130CrossRef Orlowitz E, Brandt A (2017) Comparison of experimental and operational modal analysis on a laboratory test plate. Measurement 102:121–130CrossRef
13.
Zurück zum Zitat Tunc L, Shaw J (2016) Experimental study on investigation of dynamics of hexapod robot for mobile machining. Int J Adv Manuf Technol 84:817–830 Tunc L, Shaw J (2016) Experimental study on investigation of dynamics of hexapod robot for mobile machining. Int J Adv Manuf Technol 84:817–830
14.
Zurück zum Zitat Gagnol V, Le T-P, Ray P (2011) Modal identification of spindle-tool unit in high-speed machining. Mech Syst Signal Process 25:2388–2398CrossRef Gagnol V, Le T-P, Ray P (2011) Modal identification of spindle-tool unit in high-speed machining. Mech Syst Signal Process 25:2388–2398CrossRef
15.
Zurück zum Zitat Altintas Y (2000) Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge University Press Altintas Y (2000) Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge University Press
16.
Zurück zum Zitat Zaghbani I, Songmene V (2009) Estimation of machine tool dynamic parameters during machining operation through operational modal analysis. Int J Mach Tools Manuf 49:947–957CrossRef Zaghbani I, Songmene V (2009) Estimation of machine tool dynamic parameters during machining operation through operational modal analysis. Int J Mach Tools Manuf 49:947–957CrossRef
17.
Zurück zum Zitat Maamar A, Gagnol V, Le T-P, Sabourin L (2019) Modal identification of a machine tool structure during machining operations. Int J Adv Manuf Technol, 1–12 Maamar A, Gagnol V, Le T-P, Sabourin L (2019) Modal identification of a machine tool structure during machining operations. Int J Adv Manuf Technol, 1–12
18.
Zurück zum Zitat Devriendt C, Guillaume P (2008) Identification of modal parameters from transmissibility measurements. J Sound Vibr 314:343–356CrossRef Devriendt C, Guillaume P (2008) Identification of modal parameters from transmissibility measurements. J Sound Vibr 314:343–356CrossRef
19.
Zurück zum Zitat Devriendt C, Guillaume P (2007) The use of transmissibility measurements in output-only modal analysis. Mech Syst Signal Process 21:2689–2696CrossRef Devriendt C, Guillaume P (2007) The use of transmissibility measurements in output-only modal analysis. Mech Syst Signal Process 21:2689–2696CrossRef
20.
Zurück zum Zitat Peeters B, Van der Auweraer H, et al (2005) PolyMAX: a revolution in operational modal analysis. In: 1st International operational modal analysis conference, Copenhagen, pp 26–27 Peeters B, Van der Auweraer H, et al (2005) PolyMAX: a revolution in operational modal analysis. In: 1st International operational modal analysis conference, Copenhagen, pp 26–27
21.
Zurück zum Zitat Brinker R, Zhang L, Andersen P (2000) Modal identification from ambient responses using frequency domain decomposition. In: Proceedings of 18th international modal analysis conference Brinker R, Zhang L, Andersen P (2000) Modal identification from ambient responses using frequency domain decomposition. In: Proceedings of 18th international modal analysis conference
22.
Zurück zum Zitat Antoni J (2005) Blind separation of vibration components: principles and demonstrations. Mech Syst Signal Process 19:1166– 1180CrossRef Antoni J (2005) Blind separation of vibration components: principles and demonstrations. Mech Syst Signal Process 19:1166– 1180CrossRef
23.
Zurück zum Zitat Antoni J (2006) The spectral kurtosis: a useful tool for characterizing non-stationary signals. Mech Syst Signal Process 20:282–307CrossRef Antoni J (2006) The spectral kurtosis: a useful tool for characterizing non-stationary signals. Mech Syst Signal Process 20:282–307CrossRef
24.
Zurück zum Zitat Brincker R, Andersen P, Moller N (2000) An indicator for separation of structural and harmonic modes in output-only modal testing. In: Proceeding of the 18th international modal analysis conference Brincker R, Andersen P, Moller N (2000) An indicator for separation of structural and harmonic modes in output-only modal testing. In: Proceeding of the 18th international modal analysis conference
25.
Zurück zum Zitat Jacobsen N-J, Andersen P, Brincker R (2007) Eliminating the influence of harmonic components in operational modal analysis. In: Proceedings of the 25th international modal analysis conference Jacobsen N-J, Andersen P, Brincker R (2007) Eliminating the influence of harmonic components in operational modal analysis. In: Proceedings of the 25th international modal analysis conference
26.
Zurück zum Zitat Jacobsen N-J, Andersen P, Brincker R (2007) Using EFDD as a robust technique for deterministic excitation in operational modal analysis. In: International operational modal analysis conference, pp 193–200 Jacobsen N-J, Andersen P, Brincker R (2007) Using EFDD as a robust technique for deterministic excitation in operational modal analysis. In: International operational modal analysis conference, pp 193–200
27.
Zurück zum Zitat Le T-P, Argoul P (2015) Distinction between harmonic and structural components in ambient excitation tests using the time-frequency domain decomposition technique. Mech Syst Signal Process 52:29–45CrossRef Le T-P, Argoul P (2015) Distinction between harmonic and structural components in ambient excitation tests using the time-frequency domain decomposition technique. Mech Syst Signal Process 52:29–45CrossRef
Metadaten
Titel
Pose-dependent modal behavior of a milling robot in service
verfasst von
Asia Maamar
Vincent Gagnol
Thien-Phu Le
Laurent Sabourin
Publikationsdatum
17.02.2020
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 1-2/2020
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-020-04974-y

Weitere Artikel der Ausgabe 1-2/2020

The International Journal of Advanced Manufacturing Technology 1-2/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.