Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.12.2011 | Original Article | Ausgabe 4/2011

International Journal of Machine Learning and Cybernetics 4/2011

Positive and negative fuzzy rule system, extreme learning machine and image classification

Zeitschrift:
International Journal of Machine Learning and Cybernetics > Ausgabe 4/2011
Autoren:
Wu Jun, Wang Shitong, Fu-lai Chung

Abstract

We often use the positive fuzzy rules only for image classification in traditional image classification systems, ignoring the useful negative classification information. Thanh Minh Nguyen and QMJonathan Wu introduced the negative fuzzy rules into the image classification, and proposed combination of positive and negative fuzzy rules to form the positive and negative fuzzy rule system, and then applied it to remote sensing image/natural image classification. Their experiments demonstrated that their proposed method has achieved promising results. However, since their method was realized using the feedforward neural network model which requires adjusting the weights in the gradient descent way, the training speed is very slow. Extreme learning machine (ELM) is a single hidden layer feedforward neural network (SLFNs) learning algorithm, which has distinctive advantages such as quick learning, good generalization performance. In this paper, the equivalence between ELM and the positive and negative fuzzy rule system is revealed, so ELM can be naturally used for training the positive and negative fuzzy rule system quickly for image classification. Our experimental results indicate this claim.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 4/2011

International Journal of Machine Learning and Cybernetics 4/2011 Zur Ausgabe

Original Article

Function P-sets