Skip to main content
Erschienen in: BIT Numerical Mathematics 2/2022

06.09.2021

Positivity-preserving symplectic methods for the stochastic Lotka–Volterra predator-prey model

verfasst von: Jialin Hong, Lihai Ji, Xu Wang, Jingjing Zhang

Erschienen in: BIT Numerical Mathematics | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, positivity-preserving symplectic numerical approximations are investigated for the 2d-dimensional stochastic Lotka–Volterra predator-prey model driven by multiplicative noises, which plays an important role in ecosystem. The model is shown to possess both a unique positive solution and a stochastic symplectic geometric structure, and hence can be interpreted as a stochastic Hamiltonian system. To inherit the intrinsic biological characteristic of the original system, a class of stochastic Runge–Kutta methods is presented, which is proved to preserve positivity of the numerical solution and possess the discrete stochastic symplectic geometric structure as well. Uniform boundedness of both the exact solution and the numerical one are obtained, which are crucial to derive the conditions for convergence order one in the \(\mathbb {L}^1(\varOmega )\)-norm. Numerical examples illustrate the stability and structure-preserving property of the proposed methods over long time.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Arnold, L., Horsthemke, W., Stucki, J.W.: The influence of external real and white noise on the Lotka–Volterra model. Biomed. J. 21(5), 451–471 (1979)MathSciNetMATH Arnold, L., Horsthemke, W., Stucki, J.W.: The influence of external real and white noise on the Lotka–Volterra model. Biomed. J. 21(5), 451–471 (1979)MathSciNetMATH
2.
Zurück zum Zitat Chen, C., Hong, J.: Symplectic Runge–Kutta semidiscretization for stochastic Schrödinger equation. SIAM J. Numer. Anal. 54(4), 2569–2593 (2016)MathSciNetCrossRef Chen, C., Hong, J.: Symplectic Runge–Kutta semidiscretization for stochastic Schrödinger equation. SIAM J. Numer. Anal. 54(4), 2569–2593 (2016)MathSciNetCrossRef
3.
Zurück zum Zitat Chen, C., Hong, J., Jin, D., Sun, L.: Asymptotically-preserving large deviations principles by stochastic symplectic methods for a linear stochastic oscillator. SIAM J. Numer. Anal. 59(1), 32–59 (2021)MathSciNetCrossRef Chen, C., Hong, J., Jin, D., Sun, L.: Asymptotically-preserving large deviations principles by stochastic symplectic methods for a linear stochastic oscillator. SIAM J. Numer. Anal. 59(1), 32–59 (2021)MathSciNetCrossRef
4.
Zurück zum Zitat Chessa, S., Yashima, H.F.: In: Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (ed.) The stochastic equation of predator-prey population dynamics, vol. 5, pp. 789–804. (2002) Chessa, S., Yashima, H.F.: In: Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (ed.) The stochastic equation of predator-prey population dynamics, vol. 5, pp. 789–804. (2002)
5.
Zurück zum Zitat De Bouard, A., Debussche, A.: A semi-discrete scheme for the stochastic nonlinear Schrödinger equation. Numer. Math. 96(4), 733–770 (2004)MathSciNetCrossRef De Bouard, A., Debussche, A.: A semi-discrete scheme for the stochastic nonlinear Schrödinger equation. Numer. Math. 96(4), 733–770 (2004)MathSciNetCrossRef
6.
Zurück zum Zitat Goel, N.S., Maitra, S.C., Montroll, E.W.: Nonlinear Models of Interacting Populations. Academic Press, New York (1971) Goel, N.S., Maitra, S.C., Montroll, E.W.: Nonlinear Models of Interacting Populations. Academic Press, New York (1971)
7.
Zurück zum Zitat Hong, J., Sun, L., Wang, X.: High order conformal symplectic and ergodic schemes for the stochastic Langevin equation via generating functions. SIAM J. Numer. Anal. 55(6), 3006–3029 (2017)MathSciNetCrossRef Hong, J., Sun, L., Wang, X.: High order conformal symplectic and ergodic schemes for the stochastic Langevin equation via generating functions. SIAM J. Numer. Anal. 55(6), 3006–3029 (2017)MathSciNetCrossRef
8.
Zurück zum Zitat Hong, J., Wang, X.: Invariant Measures for Stochastic Nonlinear Schrödinger Equations: Numerical Approximations and Symplectic Structures, Lecture Notes in Mathematics 2251, Springer, Singapore (2019) Hong, J., Wang, X.: Invariant Measures for Stochastic Nonlinear Schrödinger Equations: Numerical Approximations and Symplectic Structures, Lecture Notes in Mathematics 2251, Springer, Singapore (2019)
9.
Zurück zum Zitat Kloeden, P.E., Platen, E., Wright, I.: The approximation of multiple stochastic integrals. Stochastic Anal. Appl. 10(4), 431–441 (1992)MathSciNetCrossRef Kloeden, P.E., Platen, E., Wright, I.: The approximation of multiple stochastic integrals. Stochastic Anal. Appl. 10(4), 431–441 (1992)MathSciNetCrossRef
10.
Zurück zum Zitat Li, X., Jiang, D., Mao, X.: Population dynamical behavior of Lotka–Volterra system under regime switching. J. Comput. Appl. Math. 232(2), 427–448 (2009)MathSciNetCrossRef Li, X., Jiang, D., Mao, X.: Population dynamical behavior of Lotka–Volterra system under regime switching. J. Comput. Appl. Math. 232(2), 427–448 (2009)MathSciNetCrossRef
11.
Zurück zum Zitat Liu, M., Fan, M.: Permanence of stochastic Lotka–Volterra systems. J. Nonlinear Sci. 27(2), 425–452 (2017)MathSciNetCrossRef Liu, M., Fan, M.: Permanence of stochastic Lotka–Volterra systems. J. Nonlinear Sci. 27(2), 425–452 (2017)MathSciNetCrossRef
12.
Zurück zum Zitat Mao, X., Yuan, C.: Stochastic Differential Equations with Markovian Switching. Imperial College Press, London (2006)CrossRef Mao, X., Yuan, C.: Stochastic Differential Equations with Markovian Switching. Imperial College Press, London (2006)CrossRef
13.
Zurück zum Zitat Milstein, G.N., Tretyakov, M.V.: Stochastic Numerics for Mathematical Physics. Springer, Berlin (2004)CrossRef Milstein, G.N., Tretyakov, M.V.: Stochastic Numerics for Mathematical Physics. Springer, Berlin (2004)CrossRef
14.
Zurück zum Zitat Nguyen, D.H., Yin, G.: Coexistence and exclusion of stochastic competitive Lotka–Volterra models. J. Differ. Equ. 262(3), 1192–1225 (2017)MathSciNetCrossRef Nguyen, D.H., Yin, G.: Coexistence and exclusion of stochastic competitive Lotka–Volterra models. J. Differ. Equ. 262(3), 1192–1225 (2017)MathSciNetCrossRef
15.
Zurück zum Zitat Rudnicki, R.: Long-time behavior of a stochastic prey-predator model. Stoch. Proc. Appl. 108(1), 93–107 (2003)CrossRef Rudnicki, R.: Long-time behavior of a stochastic prey-predator model. Stoch. Proc. Appl. 108(1), 93–107 (2003)CrossRef
16.
Zurück zum Zitat Rudnicki, R., Pichor, K.: Influence of stochastic perturbation on prey-predator systems. Math. Biosci. 206, 108–119 (2007)MathSciNetCrossRef Rudnicki, R., Pichor, K.: Influence of stochastic perturbation on prey-predator systems. Math. Biosci. 206, 108–119 (2007)MathSciNetCrossRef
17.
Zurück zum Zitat Soize, C.: The Fokker-Planck Equation for Stochastic Dynamical Systems and Its Explicit Steady State Solutions. World Scientific Publishing Co. Inc., River Edge (1994)CrossRef Soize, C.: The Fokker-Planck Equation for Stochastic Dynamical Systems and Its Explicit Steady State Solutions. World Scientific Publishing Co. Inc., River Edge (1994)CrossRef
18.
Zurück zum Zitat Wang, L., Hong, J.: Generating functions for stochastic symplectic methods. Discrete Cont. Dyn. 34(3), 1211–1228 (2014)MathSciNetCrossRef Wang, L., Hong, J.: Generating functions for stochastic symplectic methods. Discrete Cont. Dyn. 34(3), 1211–1228 (2014)MathSciNetCrossRef
19.
Zurück zum Zitat West, R., Mobilia, M., Rucklidge, A.M.: Survival behavior in the cyclic Lotka–Volterra model with a randomly switching reaction rate. Phys. Rev. E 97, 022406 (2018)CrossRef West, R., Mobilia, M., Rucklidge, A.M.: Survival behavior in the cyclic Lotka–Volterra model with a randomly switching reaction rate. Phys. Rev. E 97, 022406 (2018)CrossRef
Metadaten
Titel
Positivity-preserving symplectic methods for the stochastic Lotka–Volterra predator-prey model
verfasst von
Jialin Hong
Lihai Ji
Xu Wang
Jingjing Zhang
Publikationsdatum
06.09.2021
Verlag
Springer Netherlands
Erschienen in
BIT Numerical Mathematics / Ausgabe 2/2022
Print ISSN: 0006-3835
Elektronische ISSN: 1572-9125
DOI
https://doi.org/10.1007/s10543-021-00891-y

Weitere Artikel der Ausgabe 2/2022

BIT Numerical Mathematics 2/2022 Zur Ausgabe