Skip to main content

2013 | OriginalPaper | Buchkapitel

9. Potential Applications of Carbon Nanotube Arrays

verfasst von : Zhifeng Ren, Yucheng Lan, Yang Wang

Erschienen in: Aligned Carbon Nanotubes

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Aligned CNT assemblies have many applications besides what were discussed in the previous chapters. In this chapter, we introduce some potential applications of aligned CNTs, which is possible from theoretical point of view but might take a long time to realize because of the immature of the needed techniques.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D.A. Walters, L.M. Ericson, M.J. Casavant, J. Liu, D.T. Colbert, K.A. Smith, R.E. Smalley, Elastic strain of freely suspended single-wall carbon nanotube ropes. Appl. Phys. Lett. 74(25), 3803–3805 (1999)ADS D.A. Walters, L.M. Ericson, M.J. Casavant, J. Liu, D.T. Colbert, K.A. Smith, R.E. Smalley, Elastic strain of freely suspended single-wall carbon nanotube ropes. Appl. Phys. Lett. 74(25), 3803–3805 (1999)ADS
2.
Zurück zum Zitat M.-F. Yu, B.S. Files, S. Arepalli, R.S. Ruoff, Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84(24), 5552–5555 (2000)ADS M.-F. Yu, B.S. Files, S. Arepalli, R.S. Ruoff, Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84(24), 5552–5555 (2000)ADS
3.
Zurück zum Zitat A. Krishnan, E. Dujardin, T.W. Ebbesen, P.N. Yianilos, M.M.J. Treacy, Young’s modulus of single-walled nanotubes. Phys. Rev. B 58, 14013–14019 (Nov 1998)ADS A. Krishnan, E. Dujardin, T.W. Ebbesen, P.N. Yianilos, M.M.J. Treacy, Young’s modulus of single-walled nanotubes. Phys. Rev. B 58, 14013–14019 (Nov 1998)ADS
4.
Zurück zum Zitat E.W. Wong, P.E. Sheehan, C.M. Lieber, Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277(5334), 1971–1975 (1997) E.W. Wong, P.E. Sheehan, C.M. Lieber, Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277(5334), 1971–1975 (1997)
5.
Zurück zum Zitat M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381(6584), 678–680 (1996)ADS M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381(6584), 678–680 (1996)ADS
6.
Zurück zum Zitat M.-F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453), 637–640 (2000) M.-F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453), 637–640 (2000)
7.
Zurück zum Zitat C. Wei, K. Cho, D. Srivastava, Tensile strength of carbon nanotubes under realistic temperature and strain rate. Phys. Rev. B 67(11), 115407 (2003)ADS C. Wei, K. Cho, D. Srivastava, Tensile strength of carbon nanotubes under realistic temperature and strain rate. Phys. Rev. B 67(11), 115407 (2003)ADS
8.
Zurück zum Zitat B.M. Nardelli, B.I. Yakobson, J. Bernholc, Mechanism of strain release in carbon nanotubes. Phys. Rev. B 57(8), R4277–R4280 (1998)ADS B.M. Nardelli, B.I. Yakobson, J. Bernholc, Mechanism of strain release in carbon nanotubes. Phys. Rev. B 57(8), R4277–R4280 (1998)ADS
9.
Zurück zum Zitat M. Reibold, P. Paufler, A.A. Levin, W. Kochmann, N. Patzke, D.C. Meyer, Materials: carbon nanotubes in an ancient damascus sabre. Nature 444(7117), 286–286 (2006) M. Reibold, P. Paufler, A.A. Levin, W. Kochmann, N. Patzke, D.C. Meyer, Materials: carbon nanotubes in an ancient damascus sabre. Nature 444(7117), 286–286 (2006)
11.
Zurück zum Zitat E.T. Thostenson, W.Z. Li, D.Z. Wang, Z.F. Ren, T.W. Chou, Carbon nanotube/carbon fiber hybrid multiscale composites. J. Appl. Phys. 91(9), 6034–6037 (2002)ADS E.T. Thostenson, W.Z. Li, D.Z. Wang, Z.F. Ren, T.W. Chou, Carbon nanotube/carbon fiber hybrid multiscale composites. J. Appl. Phys. 91(9), 6034–6037 (2002)ADS
12.
Zurück zum Zitat L. Jin, C. Bower, O. Zhou, Alignment of carbon nanotubes in a polymer matrix by mechanical stretching. Appl. Phys. Lett. 73(9), 1197–1199 (1998)ADS L. Jin, C. Bower, O. Zhou, Alignment of carbon nanotubes in a polymer matrix by mechanical stretching. Appl. Phys. Lett. 73(9), 1197–1199 (1998)ADS
13.
Zurück zum Zitat R. Haggenmueller, H.H. Gommans, A.G. Rinzler, J.E. Fischer, K.I. Winey, Aligned single-wall carbon nanotubes in composites by melt processing methods. Chem. Phys. Lett. 330(3–4), 219–225 (2000)ADS R. Haggenmueller, H.H. Gommans, A.G. Rinzler, J.E. Fischer, K.I. Winey, Aligned single-wall carbon nanotubes in composites by melt processing methods. Chem. Phys. Lett. 330(3–4), 219–225 (2000)ADS
14.
Zurück zum Zitat B. Safadi, R. Andrews, E.A. Grulke, Multiwalled carbon nanotube polymer composites: synthesis and characterization of thin films. J. Appl. Polym. Sci. 84(14), 2660–2669 (2002) B. Safadi, R. Andrews, E.A. Grulke, Multiwalled carbon nanotube polymer composites: synthesis and characterization of thin films. J. Appl. Polym. Sci. 84(14), 2660–2669 (2002)
15.
Zurück zum Zitat A.R. Bhattacharyya, T. Sreekumar, T. Liu, S. Kumar, L.M. Ericson, R.H. Hauge, R.E. Smalley, Crystallization and orientation studies in polypropylene/single wall carbon nanotube composite. Polymer 44(8), 2373–2377 (2003) A.R. Bhattacharyya, T. Sreekumar, T. Liu, S. Kumar, L.M. Ericson, R.H. Hauge, R.E. Smalley, Crystallization and orientation studies in polypropylene/single wall carbon nanotube composite. Polymer 44(8), 2373–2377 (2003)
16.
Zurück zum Zitat E.S. Choi, J.S. Brooks, D.L. Eaton, M.S. Al-Haik, M.Y. Hussaini, H. Garmestani, D. Li, K. Dahmen, Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing. J. Appl. Phys. 94(9), 6034–6039 (2003)ADS E.S. Choi, J.S. Brooks, D.L. Eaton, M.S. Al-Haik, M.Y. Hussaini, H. Garmestani, D. Li, K. Dahmen, Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing. J. Appl. Phys. 94(9), 6034–6039 (2003)ADS
17.
Zurück zum Zitat X. Zhang, Q. Li, T.G. Holesinger, P.N. Arendt, J. Huang, P.D. Kirven, T.G. Clapp, R.F. DePaula, X. Liao, Y. Zhao, L. Zheng, D. Peterson, Y. Zhu, Ultrastrong, stiff, and lightweight carbon-nanotube fibers. Adv. Mater. 19(23), 4198–4201 (2007) X. Zhang, Q. Li, T.G. Holesinger, P.N. Arendt, J. Huang, P.D. Kirven, T.G. Clapp, R.F. DePaula, X. Liao, Y. Zhao, L. Zheng, D. Peterson, Y. Zhu, Ultrastrong, stiff, and lightweight carbon-nanotube fibers. Adv. Mater. 19(23), 4198–4201 (2007)
18.
Zurück zum Zitat Y. Dror, W. Salalha, R.L. Khalfin, Y. Cohen, A.L. Yarin, E. Zussman, Carbon nanotubes embedded in oriented polymer nanofibers by electrospinning. Langmuir 19(17), 7012–7020 (2003) Y. Dror, W. Salalha, R.L. Khalfin, Y. Cohen, A.L. Yarin, E. Zussman, Carbon nanotubes embedded in oriented polymer nanofibers by electrospinning. Langmuir 19(17), 7012–7020 (2003)
19.
Zurück zum Zitat R. Sen, B. Zhao, D. Perea, M.E. Itkis, H. Hu, J. Love, E. Bekyarova, R.C. Haddon, Preparation of single-walled carbon nanotube reinforced polystyrene and polyurethane nanofibers and membranes by electrospinning. Nano Lett. 4(3), 459–464 (2004)ADS R. Sen, B. Zhao, D. Perea, M.E. Itkis, H. Hu, J. Love, E. Bekyarova, R.C. Haddon, Preparation of single-walled carbon nanotube reinforced polystyrene and polyurethane nanofibers and membranes by electrospinning. Nano Lett. 4(3), 459–464 (2004)ADS
20.
Zurück zum Zitat J. Gao, A. Yu, M.E. Itkis, E. Bekyarova, B. Zhao, S. Niyogi, R.C. Haddon, Large-scale fabrication of aligned single-walled carbon nanotube array and hierarchical single-walled carbon nanotube assembly. J. Am. Chem. Soc. 126(51), 16698–16699 (2004) J. Gao, A. Yu, M.E. Itkis, E. Bekyarova, B. Zhao, S. Niyogi, R.C. Haddon, Large-scale fabrication of aligned single-walled carbon nanotube array and hierarchical single-walled carbon nanotube assembly. J. Am. Chem. Soc. 126(51), 16698–16699 (2004)
21.
Zurück zum Zitat J.J. Ge, H. Hou, Q. Li, M.J. Graham, A. Greiner, D.H. Reneker, F.W. Harris, S.Z.D. Cheng, Assembly of well-aligned multiwalled carbon nanotubes in confined polyacrylonitrile environments: electrospun composite nanofiber sheets. J. Am. Chem. Soc. 126(48), 15754–15761 (2004) J.J. Ge, H. Hou, Q. Li, M.J. Graham, A. Greiner, D.H. Reneker, F.W. Harris, S.Z.D. Cheng, Assembly of well-aligned multiwalled carbon nanotubes in confined polyacrylonitrile environments: electrospun composite nanofiber sheets. J. Am. Chem. Soc. 126(48), 15754–15761 (2004)
22.
Zurück zum Zitat M.D. Lynch, D.L. Patrick, Organizing carbon nanotubes with liquid crystals. Nano Lett. 2(11), 1197–1201 (2002)ADS M.D. Lynch, D.L. Patrick, Organizing carbon nanotubes with liquid crystals. Nano Lett. 2(11), 1197–1201 (2002)ADS
23.
Zurück zum Zitat X.L. Xie, Y.W. Mai, X.P. Zhou, Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mat. Sci. Eng. R-Rep. 49(4), 89–112 (2005) X.L. Xie, Y.W. Mai, X.P. Zhou, Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mat. Sci. Eng. R-Rep. 49(4), 89–112 (2005)
24.
Zurück zum Zitat M. Zhang, K.R. Atkinson, R.H. Baughman, Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 306(5700), 1358–1361 (2004)ADS M. Zhang, K.R. Atkinson, R.H. Baughman, Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 306(5700), 1358–1361 (2004)ADS
25.
Zurück zum Zitat M.B. Bazbouz, G.K. Stylios, Novel mechanism for spinning continuous twisted composite nanofiber yarns. Eur. Polym. J. 44(1), 1–12 (2008) M.B. Bazbouz, G.K. Stylios, Novel mechanism for spinning continuous twisted composite nanofiber yarns. Eur. Polym. J. 44(1), 1–12 (2008)
26.
Zurück zum Zitat K. Jiang, Q. Li, S. Fan, Nanotechnology: spinning continuous carbon nanotube yarns. Nature 419(6909), 801–801 (2002)ADS K. Jiang, Q. Li, S. Fan, Nanotechnology: spinning continuous carbon nanotube yarns. Nature 419(6909), 801–801 (2002)ADS
27.
Zurück zum Zitat Y.-L. Li, I.A. Kinloch, A.H. Windle, Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 304(5668), 276–278 (2004)ADS Y.-L. Li, I.A. Kinloch, A.H. Windle, Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 304(5668), 276–278 (2004)ADS
28.
Zurück zum Zitat F. Ko, Y. Gogotsi, A. Ali, N. Naguib, H. Ye, G. Yang, C. Li, P. Willis, Electrospinning of continuous carbon nanotube-filled nanofiber yarns. Adv. Mater. 15(14), 1161–1165 (2003) F. Ko, Y. Gogotsi, A. Ali, N. Naguib, H. Ye, G. Yang, C. Li, P. Willis, Electrospinning of continuous carbon nanotube-filled nanofiber yarns. Adv. Mater. 15(14), 1161–1165 (2003)
29.
Zurück zum Zitat R.B. Pipes, P. Hubert, Helical carbon nanotube arrays: mechanical properties. Compos. Sci. Technol. 62(3), 419–428 (2002) R.B. Pipes, P. Hubert, Helical carbon nanotube arrays: mechanical properties. Compos. Sci. Technol. 62(3), 419–428 (2002)
30.
Zurück zum Zitat J.W.S. Hearle, P. Grosberg, S. Backer, Structural Mechanics of Fibers, Yarns, and Fabrics (Wiley-Interscience, New York, 1969) J.W.S. Hearle, P. Grosberg, S. Backer, Structural Mechanics of Fibers, Yarns, and Fabrics (Wiley-Interscience, New York, 1969)
31.
Zurück zum Zitat J.-P. Salvetat, G.A.D. Briggs, J.-M. Bonard, R.R. Bacsa, A.J. Kulik, T. Stöckli, N.A. Burnham, L. Forró, Elastic and shear moduli of single-walled carbon nanotube ropes. Phys. Rev. Lett. 82, 944–947 (Feb 1999)ADS J.-P. Salvetat, G.A.D. Briggs, J.-M. Bonard, R.R. Bacsa, A.J. Kulik, T. Stöckli, N.A. Burnham, L. Forró, Elastic and shear moduli of single-walled carbon nanotube ropes. Phys. Rev. Lett. 82, 944–947 (Feb 1999)ADS
32.
Zurück zum Zitat R.B. Pipes, P. Hubert, Scale effects in carbon nanostrutures: self-similar analysis. Nano Lett. 3(2), 239–243 (2003)ADS R.B. Pipes, P. Hubert, Scale effects in carbon nanostrutures: self-similar analysis. Nano Lett. 3(2), 239–243 (2003)ADS
33.
Zurück zum Zitat B. Vigolo, A. Pénicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, P. Poulin, Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 290(5495), 1331–1334 (2000)ADS B. Vigolo, A. Pénicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, P. Poulin, Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 290(5495), 1331–1334 (2000)ADS
34.
Zurück zum Zitat K. Koziol, J. Vilatela, A. Moisala, M. Motta, P. Cunniff, M. Sennett, A. Windle, High-performance carbon nanotube fiber. Science 318(5858), 1892–1895 (2007)ADS K. Koziol, J. Vilatela, A. Moisala, M. Motta, P. Cunniff, M. Sennett, A. Windle, High-performance carbon nanotube fiber. Science 318(5858), 1892–1895 (2007)ADS
35.
Zurück zum Zitat S. Kumar, T.D. Dang, F.E. Arnold, A.R. Bhattacharyya, B.G. Min, X. Zhang, R.A. Vaia, C. Park, W.W. Adams, R.H. Hauge, R.E. Smalley, S. Ramesh, P.A. Willis, Synthesis, structure, and properties of PBO/SWNT composites. Macromolecules 35(24), 9039–9043 (2002)ADS S. Kumar, T.D. Dang, F.E. Arnold, A.R. Bhattacharyya, B.G. Min, X. Zhang, R.A. Vaia, C. Park, W.W. Adams, R.H. Hauge, R.E. Smalley, S. Ramesh, P.A. Willis, Synthesis, structure, and properties of PBO/SWNT composites. Macromolecules 35(24), 9039–9043 (2002)ADS
36.
Zurück zum Zitat L.-Q. Liu, M. Eder, I. Burgert, D. Tasis, M. Prato, H.D. Wagner, One-step electrospun nanofiber-based composite ropes. Appl. Phys. Lett., 90(8), 083108 (2007) L.-Q. Liu, M. Eder, I. Burgert, D. Tasis, M. Prato, H.D. Wagner, One-step electrospun nanofiber-based composite ropes. Appl. Phys. Lett., 90(8), 083108 (2007)
37.
Zurück zum Zitat J. Jia, J. Zhao, G. Xu, J. Di, Z. Yong, Y. Tao, C. Fang, Z. Zhang, X. Zhang, L. Zheng, Q. Li, A comparison of the mechanical properties of fibers spun from different carbon nanotubes. Carbon 49(4), 1333–1339 (2011) J. Jia, J. Zhao, G. Xu, J. Di, Z. Yong, Y. Tao, C. Fang, Z. Zhang, X. Zhang, L. Zheng, Q. Li, A comparison of the mechanical properties of fibers spun from different carbon nanotubes. Carbon 49(4), 1333–1339 (2011)
38.
Zurück zum Zitat K. Liu, Y. Sun, L. Chen, C. Feng, X. Feng, K. Jiang, Y. Zhao, S. Fan, Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties. Nano Lett. 8(2), 700–705 (2008) K. Liu, Y. Sun, L. Chen, C. Feng, X. Feng, K. Jiang, Y. Zhao, S. Fan, Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties. Nano Lett. 8(2), 700–705 (2008)
39.
Zurück zum Zitat L.M. Ericson, H. Fan, H. Peng, V.A. Davis, W. Zhou, J. Sulpizio, Y. Wang, R. Booker, J. Vavro, C. Guthy, A.N.G. Parra-Vasquez, M.J. Kim, S. Ramesh, R.K. Saini, C. Kittrell, G. Lavin, H. Schmidt, W.W. Adams, W.E. Billups, M. Pasquali, W.-F. Hwang, R.H. Hauge, J.E. Fischer, R.E. Smalley, Macroscopic, neat, single-walled carbon nanotube fibers. Science 305(5689), 1447–1450 (2004)ADS L.M. Ericson, H. Fan, H. Peng, V.A. Davis, W. Zhou, J. Sulpizio, Y. Wang, R. Booker, J. Vavro, C. Guthy, A.N.G. Parra-Vasquez, M.J. Kim, S. Ramesh, R.K. Saini, C. Kittrell, G. Lavin, H. Schmidt, W.W. Adams, W.E. Billups, M. Pasquali, W.-F. Hwang, R.H. Hauge, J.E. Fischer, R.E. Smalley, Macroscopic, neat, single-walled carbon nanotube fibers. Science 305(5689), 1447–1450 (2004)ADS
40.
Zurück zum Zitat Z. Wu, Z. Chen, X. Du, J.M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J.R. Reynolds, D.B. Tanner, A.F. Hebard, A.G. Rinzler, Transparent, conductive carbon nanotube films. Science 305(5688), 1273–1276 (2004)ADS Z. Wu, Z. Chen, X. Du, J.M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J.R. Reynolds, D.B. Tanner, A.F. Hebard, A.G. Rinzler, Transparent, conductive carbon nanotube films. Science 305(5688), 1273–1276 (2004)ADS
41.
Zurück zum Zitat L. Zhang, C. Feng, Z. Chen, L. Liu, K. Jiang, Q. Li, S. Fan, Superaligned carbon nanotube grid for high resolution transmission electron microscopy of nanomaterials. Nano Lett. 8(8), 2564–2569 (2008)ADS L. Zhang, C. Feng, Z. Chen, L. Liu, K. Jiang, Q. Li, S. Fan, Superaligned carbon nanotube grid for high resolution transmission electron microscopy of nanomaterials. Nano Lett. 8(8), 2564–2569 (2008)ADS
42.
Zurück zum Zitat L. Ge, S. Sethi, L. Ci, P.M. Ajayan, A. Dhinojwala, Carbon nanotube-based synthetic gecko tapes. Proc. Natl. Acad. Sci. U S A 104(26), 10792–10795 (2007)ADS L. Ge, S. Sethi, L. Ci, P.M. Ajayan, A. Dhinojwala, Carbon nanotube-based synthetic gecko tapes. Proc. Natl. Acad. Sci. U S A 104(26), 10792–10795 (2007)ADS
43.
Zurück zum Zitat N.M. Mohamed, L.M. Kou, Piezoresistive effect of aligned multiwalled carbon nanotubes array. J. Appl. Sci. 11(8), 1386–1390 (2011)ADS N.M. Mohamed, L.M. Kou, Piezoresistive effect of aligned multiwalled carbon nanotubes array. J. Appl. Sci. 11(8), 1386–1390 (2011)ADS
44.
Zurück zum Zitat F.-Z. Zheng, Z.-Y. Zhou, X. Yang, Y.-K. Tang, Y. Wu, Investigation on strain-sensing suspended single-walled carbon nanotube arrays. IEEE Trans. Nanotechnol. 10(4), 694–698 (2011) F.-Z. Zheng, Z.-Y. Zhou, X. Yang, Y.-K. Tang, Y. Wu, Investigation on strain-sensing suspended single-walled carbon nanotube arrays. IEEE Trans. Nanotechnol. 10(4), 694–698 (2011)
45.
Zurück zum Zitat J. Choi, J. Kim, Batch-processed carbon nanotube wall as pressure and flow sensor. Nanotechnology 21(10), 105502 (2010)MathSciNetADS J. Choi, J. Kim, Batch-processed carbon nanotube wall as pressure and flow sensor. Nanotechnology 21(10), 105502 (2010)MathSciNetADS
46.
Zurück zum Zitat X. Yang, Z. Zhou, D. Wang, X. Liu, High sensitivity carbon nanotubes flow-rate sensors and their performance improvement by coating. Sensors 10(5), 4898–4906 (2010) X. Yang, Z. Zhou, D. Wang, X. Liu, High sensitivity carbon nanotubes flow-rate sensors and their performance improvement by coating. Sensors 10(5), 4898–4906 (2010)
47.
Zurück zum Zitat S. Frank, P. Poncharal, Z.L. Wang, W.A. de Heer, Carbon nanotube quantum resistors. Science 280(5370), 1744–1746 (1998)ADS S. Frank, P. Poncharal, Z.L. Wang, W.A. de Heer, Carbon nanotube quantum resistors. Science 280(5370), 1744–1746 (1998)ADS
48.
Zurück zum Zitat R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Carbon nanotubes-the route toward applications. Science 297(5582), 787–792 (2002) R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Carbon nanotubes-the route toward applications. Science 297(5582), 787–792 (2002)
49.
Zurück zum Zitat M.J. Biercuk, M.C. Llaguno, M. Radosavljevic, J.K. Hyun, A.T. Johnson, J.E. Fischer, Carbon nanotube composites for thermal management. Appl. Phys. Lett. 80(15), 2767–2769 (2002)ADS M.J. Biercuk, M.C. Llaguno, M. Radosavljevic, J.K. Hyun, A.T. Johnson, J.E. Fischer, Carbon nanotube composites for thermal management. Appl. Phys. Lett. 80(15), 2767–2769 (2002)ADS
50.
Zurück zum Zitat W. Bauhofer, J.Z. Kovacs, A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 69(10), 1486–1498 (2009) W. Bauhofer, J.Z. Kovacs, A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 69(10), 1486–1498 (2009)
51.
Zurück zum Zitat F. Du, J.E. Fischer, K.I. Winey, Effect of nanotube alignment on percolation conductivity in carbon nanotube/polymer composites. Phys. Rev. B 72(12), 121404 (2005)ADS F. Du, J.E. Fischer, K.I. Winey, Effect of nanotube alignment on percolation conductivity in carbon nanotube/polymer composites. Phys. Rev. B 72(12), 121404 (2005)ADS
52.
Zurück zum Zitat J. Sandler, J. Kirk, I. Kinloch, M. Shaffer, A. Windle, Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44(19), 5893–5899 (2003) J. Sandler, J. Kirk, I. Kinloch, M. Shaffer, A. Windle, Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44(19), 5893–5899 (2003)
53.
Zurück zum Zitat E. Bichoutskaia, A.M. Popov, Y.E. Lozovik, Nanotube-based data storage devices. Mater. Today 11(6), 38–43 (2008) E. Bichoutskaia, A.M. Popov, Y.E. Lozovik, Nanotube-based data storage devices. Mater. Today 11(6), 38–43 (2008)
54.
Zurück zum Zitat T. Rueckes, K. Kim, E. Joselevich, G.Y. Tseng, C.-L. Cheung, C.M. Lieber, Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289(5476), 94–97 (2000) T. Rueckes, K. Kim, E. Joselevich, G.Y. Tseng, C.-L. Cheung, C.M. Lieber, Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289(5476), 94–97 (2000)
55.
Zurück zum Zitat W.B. Choi, J.U. Chu, K.S. Jeong, E.J. Bae, J.-W. Lee, J.-J. Kim, J.-O. Lee, Ultrahigh-density nanotransistors by using selectively grown vertical carbon nanotubes. Appl. Phys. Lett. 79(22), 3696–3698 (2001)ADS W.B. Choi, J.U. Chu, K.S. Jeong, E.J. Bae, J.-W. Lee, J.-J. Kim, J.-O. Lee, Ultrahigh-density nanotransistors by using selectively grown vertical carbon nanotubes. Appl. Phys. Lett. 79(22), 3696–3698 (2001)ADS
56.
Zurück zum Zitat X. Ho, L. Ye, S.V. Rotkin, Q. Cao, S. Unarunotai, S. Salamat, M.A. Alam, J.A. Rogers, Scaling properties in transistors that use aligned arrays of single-walled carbon nanotubes. Nano Lett. 10(2), 499–503 (2010)ADS X. Ho, L. Ye, S.V. Rotkin, Q. Cao, S. Unarunotai, S. Salamat, M.A. Alam, J.A. Rogers, Scaling properties in transistors that use aligned arrays of single-walled carbon nanotubes. Nano Lett. 10(2), 499–503 (2010)ADS
57.
Zurück zum Zitat F. Noca, J. Xu, P. Koumoutsakos, T. Werder, J. Walther, in Nanoscale ears based on artificial stereocilia, in The 140th Meeting of the Acoustical Society of America/NOISE-CON, Newport Beach, California (2000) F. Noca, J. Xu, P. Koumoutsakos, T. Werder, J. Walther, in Nanoscale ears based on artificial stereocilia, in The 140th Meeting of the Acoustical Society of America/NOISE-CON, Newport Beach, California (2000)
58.
Zurück zum Zitat R.R. Boullosa, A.O. Santillá, A note on the use of novel thermoacoustic radiators for ultrasonic experiments: the importance of phase in a focused field. Eur. J. Phys. 27(1), 95 (2006) R.R. Boullosa, A.O. Santillá, A note on the use of novel thermoacoustic radiators for ultrasonic experiments: the importance of phase in a focused field. Eur. J. Phys. 27(1), 95 (2006)
59.
Zurück zum Zitat H.D. Arnold, I.B. Crandall, The thermophone as a precision source of sound. Phys. Rev. 10(1) 22–38 (1917) H.D. Arnold, I.B. Crandall, The thermophone as a precision source of sound. Phys. Rev. 10(1) 22–38 (1917)
60.
Zurück zum Zitat P. Liu, L. Liu, Y. Wei, K. Liu, Z. Chen, K. Jiang, Q. Li, S. Fan, Fast high-temperature response of carbon nanotube film and its application as an incandescent display. Adv. Mater. 21(35), 3563–3566 (2009) P. Liu, L. Liu, Y. Wei, K. Liu, Z. Chen, K. Jiang, Q. Li, S. Fan, Fast high-temperature response of carbon nanotube film and its application as an incandescent display. Adv. Mater. 21(35), 3563–3566 (2009)
61.
Zurück zum Zitat L. Xiao, Z. Chen, C. Feng, L. Liu, Z.-Q. Bai, Y. Wang, L. Qian, Y. Zhang, Q. Li, K. Jiang, S. Fan, Flexible, stretchable, transparent carbon nanotube thin film loudspeakers. Nano Lett. 8(12), 4539–4545 (2008)ADS L. Xiao, Z. Chen, C. Feng, L. Liu, Z.-Q. Bai, Y. Wang, L. Qian, Y. Zhang, Q. Li, K. Jiang, S. Fan, Flexible, stretchable, transparent carbon nanotube thin film loudspeakers. Nano Lett. 8(12), 4539–4545 (2008)ADS
62.
Zurück zum Zitat E.C. Wente, The thermophone. Phys. Rev. 19(4), 333–345 (1922)ADS E.C. Wente, The thermophone. Phys. Rev. 19(4), 333–345 (1922)ADS
63.
Zurück zum Zitat L. Xiao, P. Liu, L. Liu, Q. Li, Z. Feng, S. Fan, K. Jiang, High frequency response of carbon nanotube thin film speaker in gases. J. Appl. Phys 110(8), 084311 (2011)ADS L. Xiao, P. Liu, L. Liu, Q. Li, Z. Feng, S. Fan, K. Jiang, High frequency response of carbon nanotube thin film speaker in gases. J. Appl. Phys 110(8), 084311 (2011)ADS
64.
Zurück zum Zitat A.E. Aliev, M.D. Lima, S. Fang, R.H. Baughman, Underwater sound generation using carbon nanotube projectors. Nano Lett. 10(7), 2374–2380 (2010)ADS A.E. Aliev, M.D. Lima, S. Fang, R.H. Baughman, Underwater sound generation using carbon nanotube projectors. Nano Lett. 10(7), 2374–2380 (2010)ADS
65.
Zurück zum Zitat V. Vesterinen, A.O. Niskanen, J. Hassel, P. Helistö, Fundamental efficiency of nanothermophones: modeling and experiments. Nano Lett. 10, 5020–5024 (2010)ADS V. Vesterinen, A.O. Niskanen, J. Hassel, P. Helistö, Fundamental efficiency of nanothermophones: modeling and experiments. Nano Lett. 10, 5020–5024 (2010)ADS
66.
Zurück zum Zitat K. Suzuki, S. Sakakibara, M. Okada, Y. Neo, H. Mimura, Y. Inoue, T. Murata, Study of carbon-nanotube web thermoacoustic loud speakers. Jpn. J. Appl. Phys. 50(1), 01BJ10 (2011) K. Suzuki, S. Sakakibara, M. Okada, Y. Neo, H. Mimura, Y. Inoue, T. Murata, Study of carbon-nanotube web thermoacoustic loud speakers. Jpn. J. Appl. Phys. 50(1), 01BJ10 (2011)
67.
Zurück zum Zitat H. Tian, T.-L. Ren, D. Xie, Y.-F. Wang, C.-J. Zhou, T.-T. Feng, D. Fu, Y. Yang, P.-G. Peng, L.-G. Wang, L.-T. Liu, Graphene-on-paper sound source devices. ACS Nano 5(6), 4878–4885 (2011) H. Tian, T.-L. Ren, D. Xie, Y.-F. Wang, C.-J. Zhou, T.-T. Feng, D. Fu, Y. Yang, P.-G. Peng, L.-G. Wang, L.-T. Liu, Graphene-on-paper sound source devices. ACS Nano 5(6), 4878–4885 (2011)
68.
Zurück zum Zitat H.W. Baac, J.G. Ok, H.J. Park, T. Ling, S.-L. Chen, A.J. Hart, L.J. Guo, Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation. Appl. Phys. Lett. 97(23), 234104 (2010)ADS H.W. Baac, J.G. Ok, H.J. Park, T. Ling, S.-L. Chen, A.J. Hart, L.J. Guo, Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation. Appl. Phys. Lett. 97(23), 234104 (2010)ADS
69.
Zurück zum Zitat M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104(10), 4245–4270 (2004) M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104(10), 4245–4270 (2004)
70.
Zurück zum Zitat J. Li, A. Cassell, L. Delzeit, J. Han, M. Meyyappan, Novel three-dimensional electrodes: electrochemical properties of carbon nanotube ensembles. J. Phys. Chem. B 106(36), 9299–9305 (2002) J. Li, A. Cassell, L. Delzeit, J. Han, M. Meyyappan, Novel three-dimensional electrodes: electrochemical properties of carbon nanotube ensembles. J. Phys. Chem. B 106(36), 9299–9305 (2002)
71.
Zurück zum Zitat J.K. Campbell, L. Sun, R.M. Crooks, Electrochemistry using single carbon nanotubes. J. Am. Chem. Soc. 121(15), 3779–3780 (1999) J.K. Campbell, L. Sun, R.M. Crooks, Electrochemistry using single carbon nanotubes. J. Am. Chem. Soc. 121(15), 3779–3780 (1999)
72.
Zurück zum Zitat P. Britto, K. Santhanam, P. Ajayan, Carbon nanotube electrode for oxidation of dopamine. Bioelectrochem. Bioenerg. 41(1), 121–125 (1996) P. Britto, K. Santhanam, P. Ajayan, Carbon nanotube electrode for oxidation of dopamine. Bioelectrochem. Bioenerg. 41(1), 121–125 (1996)
73.
Zurück zum Zitat J.M. Nugent, K.S.V. Santhanam, A. Rubio, P.M. Ajayan, Fast electron transfer kinetics on multiwalled carbon nanotube microbundle electrodes. Nano Lett. 1(2), 87–91 (2001)ADS J.M. Nugent, K.S.V. Santhanam, A. Rubio, P.M. Ajayan, Fast electron transfer kinetics on multiwalled carbon nanotube microbundle electrodes. Nano Lett. 1(2), 87–91 (2001)ADS
74.
Zurück zum Zitat J. Wang, M. Musameh, Y. Lin, Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors. J. Am. Chem. Soc. 125(9), 2408–2409 (2003) J. Wang, M. Musameh, Y. Lin, Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors. J. Am. Chem. Soc. 125(9), 2408–2409 (2003)
75.
Zurück zum Zitat H. Luo, Z. Shi, N. Li, Z. Gu, Q. Zhuang, Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode. Anal. Chem. 73(5), 915–920 (2001) H. Luo, Z. Shi, N. Li, Z. Gu, Q. Zhuang, Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode. Anal. Chem. 73(5), 915–920 (2001)
76.
Zurück zum Zitat G. Che, B.B. Lakshmi, E.R. Fisher, C.R. Martin, Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393(6683), 346–349 (1998)ADS G. Che, B.B. Lakshmi, E.R. Fisher, C.R. Martin, Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393(6683), 346–349 (1998)ADS
77.
Zurück zum Zitat M. Musameh, J. Wang, A. Merkoci, Y. Lin, Low-potential stable nadh detection at carbon-nanotube-modified glassy carbon electrodes. Electrochem. Commun. 4(10), 743–746 (2002) M. Musameh, J. Wang, A. Merkoci, Y. Lin, Low-potential stable nadh detection at carbon-nanotube-modified glassy carbon electrodes. Electrochem. Commun. 4(10), 743–746 (2002)
78.
Zurück zum Zitat Y. Lin, S. Taylor, H.P. Li, K.A.S. Fernando, L.W. Qu, W. Wang, L.R. Gu, B. Zhou, Y.P. Sun, Advances toward bioapplications of carbon nanotubes. J. Mater. Chem. 14(4), 527–541 (2004) Y. Lin, S. Taylor, H.P. Li, K.A.S. Fernando, L.W. Qu, W. Wang, L.R. Gu, B. Zhou, Y.P. Sun, Advances toward bioapplications of carbon nanotubes. J. Mater. Chem. 14(4), 527–541 (2004)
79.
Zurück zum Zitat P. J. Britto, K.S.V. Santhanam, A. Rubio, J.A. Alonso, P.M. Ajayan, Improved charge transfer at carbon nanotube electrodes. Adv. Mater. 11(2), 154–157 (1999) P. J. Britto, K.S.V. Santhanam, A. Rubio, J.A. Alonso, P.M. Ajayan, Improved charge transfer at carbon nanotube electrodes. Adv. Mater. 11(2), 154–157 (1999)
80.
Zurück zum Zitat B.D. McNicol, D.A.J. Rand, K.R. Williams, Direct methanol-air fuel cells for road transportation. J. Power Sources 83(1–2), 15–31 (1999) B.D. McNicol, D.A.J. Rand, K.R. Williams, Direct methanol-air fuel cells for road transportation. J. Power Sources 83(1–2), 15–31 (1999)
81.
Zurück zum Zitat A. Gamez, D. Richard, P. Gallezot, F. Gloaguen, R. Faure, R. Durand, Oxygen reduction on well-defined platinum nanoparticles inside recast ionomer. Electrochim. Acta. 41(2), 307–314 (1996) A. Gamez, D. Richard, P. Gallezot, F. Gloaguen, R. Faure, R. Durand, Oxygen reduction on well-defined platinum nanoparticles inside recast ionomer. Electrochim. Acta. 41(2), 307–314 (1996)
82.
Zurück zum Zitat J.-S. Yu, S. Kang, S.B. Yoon, G. Chai, Fabrication of ordered uniform porous carbon networks and their application to a catalyst supporter. J. Am. Chem. Soc. 124, 9382–9383 (2002) J.-S. Yu, S. Kang, S.B. Yoon, G. Chai, Fabrication of ordered uniform porous carbon networks and their application to a catalyst supporter. J. Am. Chem. Soc. 124, 9382–9383 (2002)
83.
Zurück zum Zitat H. Tang, J.H. Chen, Z.P. Huang, D.Z. Wang, Z.F. Ren, L.H. Nie, Y.F. Kuang, S.Z. Yao, High dispersion and electrocatalytic properties of platinum on well-aligned carbon nanotube arrays. Carbon 42(1), 191–197 (2004) H. Tang, J.H. Chen, Z.P. Huang, D.Z. Wang, Z.F. Ren, L.H. Nie, Y.F. Kuang, S.Z. Yao, High dispersion and electrocatalytic properties of platinum on well-aligned carbon nanotube arrays. Carbon 42(1), 191–197 (2004)
84.
Zurück zum Zitat H. Dai, E.W. Wong, C.M. Lieber, Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes. Science 272(5261), 523–526 (1996)ADS H. Dai, E.W. Wong, C.M. Lieber, Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes. Science 272(5261), 523–526 (1996)ADS
85.
Zurück zum Zitat T.W. Ebbesen, P.M. Ajayan, Large-scale synthesis of carbon nanotubes. Nature 358(6383), 220–222 (1992)ADS T.W. Ebbesen, P.M. Ajayan, Large-scale synthesis of carbon nanotubes. Nature 358(6383), 220–222 (1992)ADS
86.
Zurück zum Zitat W. Li, C. Liang, J. Qiu, W. Zhou, H. Han, Z. Wei, G. Sun, Q. Xin, Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell. Carbon 40(5), 791–794 (2002) W. Li, C. Liang, J. Qiu, W. Zhou, H. Han, Z. Wei, G. Sun, Q. Xin, Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell. Carbon 40(5), 791–794 (2002)
87.
Zurück zum Zitat V. Lordi, N. Yao, J. Wei, Method for supporting platinum on single-walled carbon nanotubes for a selective hydrogenation catalyst. Chem. Mater. 13, 733–737 (2001) V. Lordi, N. Yao, J. Wei, Method for supporting platinum on single-walled carbon nanotubes for a selective hydrogenation catalyst. Chem. Mater. 13, 733–737 (2001)
88.
Zurück zum Zitat N. Jha, A.L.M. Reddy, M. Shaijumon, N. Rajalakshmi, S. Ramaprabhu, Pt-Ru/multi-walled carbon nanotubes as electrocatalysts for direct methanol fuel cell. Int. J. Hydrogen Energy 33(1), 427–433 (2008) N. Jha, A.L.M. Reddy, M. Shaijumon, N. Rajalakshmi, S. Ramaprabhu, Pt-Ru/multi-walled carbon nanotubes as electrocatalysts for direct methanol fuel cell. Int. J. Hydrogen Energy 33(1), 427–433 (2008)
89.
Zurück zum Zitat Z. Liu, X. Lin, J.Y. Lee, W. Zhang, M. Han, L.M. Gan, Preparation and characterization of platinum-based electrocatalysts on multiwalled carbon nanotubes for proton exchange membrane fuel cells. Langmuir 18(10), 4054–4060 (2002) Z. Liu, X. Lin, J.Y. Lee, W. Zhang, M. Han, L.M. Gan, Preparation and characterization of platinum-based electrocatalysts on multiwalled carbon nanotubes for proton exchange membrane fuel cells. Langmuir 18(10), 4054–4060 (2002)
90.
Zurück zum Zitat R. Yu, L. Chen, Q. Liu, J. Lin, K.-L. Tan, S.C. Ng, H.S.O. Chan, G.-Q. Xu, T.S.A. Hor, Platinum deposition on carbon nanotubes via chemical modification. Chem. Mater. 10, 718–722 (Mar. 1998) R. Yu, L. Chen, Q. Liu, J. Lin, K.-L. Tan, S.C. Ng, H.S.O. Chan, G.-Q. Xu, T.S.A. Hor, Platinum deposition on carbon nanotubes via chemical modification. Chem. Mater. 10, 718–722 (Mar. 1998)
91.
Zurück zum Zitat J.M. Planeix, N. Coustel, B. Coq, V. Brotons, P.S. Kumbhar, R. Dutartre, P. Geneste, P. Bernier, P.M. Ajayan, Application of carbon nanotubes as supports in heterogeneous catalysis. J. Am. Chem. Soc. 116, 7935–7936 (1994) J.M. Planeix, N. Coustel, B. Coq, V. Brotons, P.S. Kumbhar, R. Dutartre, P. Geneste, P. Bernier, P.M. Ajayan, Application of carbon nanotubes as supports in heterogeneous catalysis. J. Am. Chem. Soc. 116, 7935–7936 (1994)
92.
Zurück zum Zitat I. Dumitrescu, P.R. Unwin, J.V. Macpherson, Electrochemistry at carbon nanotubes: perspective and issues. Chem. Commun. 2009(45), 6886–6901 (2009) I. Dumitrescu, P.R. Unwin, J.V. Macpherson, Electrochemistry at carbon nanotubes: perspective and issues. Chem. Commun. 2009(45), 6886–6901 (2009)
93.
Zurück zum Zitat J.J. Gooding, Nanostructuring electrodes with carbon nanotubes: a review on electrochemistry and applications for sensing. Electrochim. Acta 50(15), 3049–3060 (2005) J.J. Gooding, Nanostructuring electrodes with carbon nanotubes: a review on electrochemistry and applications for sensing. Electrochim. Acta 50(15), 3049–3060 (2005)
94.
Zurück zum Zitat N. Soin, S. Roy, L. Karlsson, J. McLaughlin, Sputter deposition of highly dispersed platinum nanoparticles on carbon nanotube arrays for fuel cell electrode material. Diamond Relat. Mater. 19(5–6), 595–598 (2010)ADS N. Soin, S. Roy, L. Karlsson, J. McLaughlin, Sputter deposition of highly dispersed platinum nanoparticles on carbon nanotube arrays for fuel cell electrode material. Diamond Relat. Mater. 19(5–6), 595–598 (2010)ADS
95.
Zurück zum Zitat W.-C. Fang, High methanol oxidation activity of well-dispersed Pt nanoparticles on carbon nanotubes using nitrogen doping. Nanoscale Res. Lett. 5(1), 68–73 (2010)ADS W.-C. Fang, High methanol oxidation activity of well-dispersed Pt nanoparticles on carbon nanotubes using nitrogen doping. Nanoscale Res. Lett. 5(1), 68–73 (2010)ADS
96.
Zurück zum Zitat J. Yang, D.-J. Liu, N.N. Kariuki, L.X. Chen, Aligned carbon nanotubes with built-in \(\text{FeN}_4\) active sites for electrocatalytic reduction of oxygen. Chem. Commun. 2008(3), 329–331 (2008) J. Yang, D.-J. Liu, N.N. Kariuki, L.X. Chen, Aligned carbon nanotubes with built-in \(\text{FeN}_4\) active sites for electrocatalytic reduction of oxygen. Chem. Commun. 2008(3), 329–331 (2008)
97.
Zurück zum Zitat H.B. Zhang, X.L. Liang, X. Dong, H.Y. Li, G.D. Lin, Multi-walled carbon nanotubes as a novel promoter of catalysts for CO/\(\text{CO}_2\) hydrogenation to alcohols. Catal. Surv. Asia 13(1), 41–58 (2009) H.B. Zhang, X.L. Liang, X. Dong, H.Y. Li, G.D. Lin, Multi-walled carbon nanotubes as a novel promoter of catalysts for CO/\(\text{CO}_2\) hydrogenation to alcohols. Catal. Surv. Asia 13(1), 41–58 (2009)
98.
Zurück zum Zitat K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323(5915), 760–764 (2009)ADS K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323(5915), 760–764 (2009)ADS
99.
Zurück zum Zitat P. Matter, U. Ozkan, Non-metal catalysts for dioxygen reduction in an acidic electrolyte. Catal. Lett. 109(3), 115–123 (2006) P. Matter, U. Ozkan, Non-metal catalysts for dioxygen reduction in an acidic electrolyte. Catal. Lett. 109(3), 115–123 (2006)
100.
Zurück zum Zitat F. Hu, W. Chen, End-opened carbon nanotube array supported Pd as anode for alkaline fuel cells. Electrochem. Commun. 13(9), 955–958 (2011)MathSciNet F. Hu, W. Chen, End-opened carbon nanotube array supported Pd as anode for alkaline fuel cells. Electrochem. Commun. 13(9), 955–958 (2011)MathSciNet
101.
Zurück zum Zitat B. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Kluwer, Boston, 1999) B. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Kluwer, Boston, 1999)
102.
Zurück zum Zitat J.M. Boyea, R.E. Camacho, S.P. Turano, W.J. Ready, Carbon nanotube-based supercapacitors: technologies and markets. Nanotechnol. Law Bus. 4(1), 585–593 (2007) J.M. Boyea, R.E. Camacho, S.P. Turano, W.J. Ready, Carbon nanotube-based supercapacitors: technologies and markets. Nanotechnol. Law Bus. 4(1), 585–593 (2007)
103.
Zurück zum Zitat C. Niu, E.K. Sichel, R. Hoch, D. Moy, H. Tennent, High power electrochemical capacitors based on carbon nanotube electrodes. Appl. Phys. Lett. 70(11), 1480–1482 (1997)ADS C. Niu, E.K. Sichel, R. Hoch, D. Moy, H. Tennent, High power electrochemical capacitors based on carbon nanotube electrodes. Appl. Phys. Lett. 70(11), 1480–1482 (1997)ADS
104.
Zurück zum Zitat K.H. An, W.S. Kim, Y.S. Park, J.-M. Moon, D.J. Bae, S.C. Lim, Y.S. Lee, Y.H. Lee, Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. Adv. Funct. Mater. 11(5), 387–392 (2001) K.H. An, W.S. Kim, Y.S. Park, J.-M. Moon, D.J. Bae, S.C. Lim, Y.S. Lee, Y.H. Lee, Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. Adv. Funct. Mater. 11(5), 387–392 (2001)
105.
Zurück zum Zitat H. Zhang, G.P. Cao, Y.S. Yang, Using a cut-paste method to prepare a carbon nanotube fur electrode. Nanotechnology 18(19), 195607 (2007)ADS H. Zhang, G.P. Cao, Y.S. Yang, Using a cut-paste method to prepare a carbon nanotube fur electrode. Nanotechnology 18(19), 195607 (2007)ADS
106.
Zurück zum Zitat D. Nkosi, K.I. Ozoemena, Self-assembled nano-arrays of single-walled carbon nanotube-octa(hydroxyethylthio)phthalocyaninatoiron(II) on gold surfaces: impacts of SWCNT and solution pH on electron transfer kinetics. Electrochim. Acta 53(6), 2782–2793 (2008) D. Nkosi, K.I. Ozoemena, Self-assembled nano-arrays of single-walled carbon nanotube-octa(hydroxyethylthio)phthalocyaninatoiron(II) on gold surfaces: impacts of SWCNT and solution pH on electron transfer kinetics. Electrochim. Acta 53(6), 2782–2793 (2008)
107.
Zurück zum Zitat T. Hiraoka, T. Yamada, K. Hata, D.N. Futaba, H. Kurachi, S. Uemura, M. Yumura, S. Iijima, Synthesis of single- and double-walled carbon nanotube forests on conducting metal foils. J. Am. Chem. Soc. 128(41), 13338–13339 (2006) T. Hiraoka, T. Yamada, K. Hata, D.N. Futaba, H. Kurachi, S. Uemura, M. Yumura, S. Iijima, Synthesis of single- and double-walled carbon nanotube forests on conducting metal foils. J. Am. Chem. Soc. 128(41), 13338–13339 (2006)
108.
Zurück zum Zitat S. Talapatra, S. Kar, S.K. Pal, R. Vajtai, L. Ci, P. Victor, M.M. Shaijumon, S. Kaur, O. Nalamasu, M.P. Ajayan, Direct growth of aligned carbon nanotubes on bulk metals. Nat. Nanotechnol. 1(2), 112–116 (2006)ADS S. Talapatra, S. Kar, S.K. Pal, R. Vajtai, L. Ci, P. Victor, M.M. Shaijumon, S. Kaur, O. Nalamasu, M.P. Ajayan, Direct growth of aligned carbon nanotubes on bulk metals. Nat. Nanotechnol. 1(2), 112–116 (2006)ADS
109.
Zurück zum Zitat E. Frackowiak, Carbon materials for supercapacitor application. Phys. Chem. Chem. Phys. 9, 1774–1785 (2007) E. Frackowiak, Carbon materials for supercapacitor application. Phys. Chem. Chem. Phys. 9, 1774–1785 (2007)
110.
Zurück zum Zitat L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38(9), 2520–2531 (2009) L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38(9), 2520–2531 (2009)
111.
Zurück zum Zitat E. Raymundo-Piñero, K. Kierzek, J. Machnikowski, F. Béguin, Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon 44(12), 2498–2507 (2006) E. Raymundo-Piñero, K. Kierzek, J. Machnikowski, F. Béguin, Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon 44(12), 2498–2507 (2006)
112.
Zurück zum Zitat V.L. Pushparaj, M.M. Shaijumon, A. Kumar, S. Murugesan, L. Ci, R. Vajtai, R.J. Linhardt, O. Nalamasu, P.M. Ajayan, Flexible energy storage devices based on nanocomposite paper. Proc. Natl. Acad. Sci. U S A 104(34), 13574–13577 (2007)ADS V.L. Pushparaj, M.M. Shaijumon, A. Kumar, S. Murugesan, L. Ci, R. Vajtai, R.J. Linhardt, O. Nalamasu, P.M. Ajayan, Flexible energy storage devices based on nanocomposite paper. Proc. Natl. Acad. Sci. U S A 104(34), 13574–13577 (2007)ADS
113.
Zurück zum Zitat C. Largeot, C. Portet, J. Chmiola, P.-L. Taberna, Y. Gogotsi, P. Simon, Relation between the ion size and pore size for an electric double-layer capacitor. J. Am. Chem. Soc. 130(9), 730–2731 (2008) C. Largeot, C. Portet, J. Chmiola, P.-L. Taberna, Y. Gogotsi, P. Simon, Relation between the ion size and pore size for an electric double-layer capacitor. J. Am. Chem. Soc. 130(9), 730–2731 (2008)
114.
Zurück zum Zitat H. Zhang, G.P. Cao, Y.S. Yang, Carbon nanotube arrays and their composites for electrochemical capacitors and lithium-ion batteries. Energy Environ. Sci. 2(9), 932–943 (2009) H. Zhang, G.P. Cao, Y.S. Yang, Carbon nanotube arrays and their composites for electrochemical capacitors and lithium-ion batteries. Energy Environ. Sci. 2(9), 932–943 (2009)
115.
Zurück zum Zitat P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)ADS P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)ADS
116.
Zurück zum Zitat D.N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura, S. Iijima, Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat. Mater. 5, 987–994 (2006)ADS D.N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura, S. Iijima, Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat. Mater. 5, 987–994 (2006)ADS
117.
Zurück zum Zitat Y. Honda, T. Haramoto, M. Takeshige, H. Shiozaki, T. Kitamura, M. Ishikawa, Aligned mwcnt sheet electrodes prepared by transfer methodology providing high-power capacitor performance. Electrochem. Solid-State Lett. 10(4), A106–A110 (2007) Y. Honda, T. Haramoto, M. Takeshige, H. Shiozaki, T. Kitamura, M. Ishikawa, Aligned mwcnt sheet electrodes prepared by transfer methodology providing high-power capacitor performance. Electrochem. Solid-State Lett. 10(4), A106–A110 (2007)
118.
Zurück zum Zitat T. Iwasaki, T. Maki, D. Yokoyama, H. Kumagai, Y. Hashimoto, T. Asari, H. Kawarada, Highly selective growth of vertically aligned double-walled carbon nanotubes by a controlled heating method and their electric double-layer capacitor properties. Phys. Stat. Sol. (RRL) 2(2), 53–55 (2008) T. Iwasaki, T. Maki, D. Yokoyama, H. Kumagai, Y. Hashimoto, T. Asari, H. Kawarada, Highly selective growth of vertically aligned double-walled carbon nanotubes by a controlled heating method and their electric double-layer capacitor properties. Phys. Stat. Sol. (RRL) 2(2), 53–55 (2008)
119.
Zurück zum Zitat L. Gao, A. Peng, Z.Y. Wang, H. Zhang, Z. Shi, Z. Gu, G. Cao, B. Ding, Growth of aligned carbon nanotube arrays on metallic substrate and its application to supercapacitors. Solid State Commun. 146(9–10), 380–383 (2008) L. Gao, A. Peng, Z.Y. Wang, H. Zhang, Z. Shi, Z. Gu, G. Cao, B. Ding, Growth of aligned carbon nanotube arrays on metallic substrate and its application to supercapacitors. Solid State Commun. 146(9–10), 380–383 (2008)
120.
Zurück zum Zitat H. Zhang, G. Cao, Z. Wang, Y. Yang, Z. Shi, Z. Gu, Tube-covering-tube nanostructured polyaniline/carbon nanotube array composite electrode with high capacitance and superior rate performance as well as good cycling stability. Electrochem. Commun. 10(7), 1056–1059 (2008) H. Zhang, G. Cao, Z. Wang, Y. Yang, Z. Shi, Z. Gu, Tube-covering-tube nanostructured polyaniline/carbon nanotube array composite electrode with high capacitance and superior rate performance as well as good cycling stability. Electrochem. Commun. 10(7), 1056–1059 (2008)
121.
Zurück zum Zitat H. Zhang, G. Cao, Z. Wang, Y. Yang, Z. Shi, Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano Lett. 8(9), 2664–2668 (2008)ADS H. Zhang, G. Cao, Z. Wang, Y. Yang, Z. Shi, Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano Lett. 8(9), 2664–2668 (2008)ADS
122.
Zurück zum Zitat C.L. Pint, N.W. Nicholas, S. Xu, Z. Sun, J.M. Tour, H.K. Schmidt, R.G. Gordon, R.H. Hauge, Three dimensional solid-state supercapacitors from aligned single-walled carbon nanotube array templates. Carbon 49(14), 4890–4897 (2011) C.L. Pint, N.W. Nicholas, S. Xu, Z. Sun, J.M. Tour, H.K. Schmidt, R.G. Gordon, R.H. Hauge, Three dimensional solid-state supercapacitors from aligned single-walled carbon nanotube array templates. Carbon 49(14), 4890–4897 (2011)
123.
Zurück zum Zitat Z. Niu, W. Zhou, J. Chen, G. Feng, H. Li, W. Ma, J. Li, H. Dong, Y. Ren, D. Zhao, S. Xie, Compact-designed supercapacitors using free-standing single-walled carbon nanotube films. Energy Environ. Sci. 4(4), 1440–1446 (2011) Z. Niu, W. Zhou, J. Chen, G. Feng, H. Li, W. Ma, J. Li, H. Dong, Y. Ren, D. Zhao, S. Xie, Compact-designed supercapacitors using free-standing single-walled carbon nanotube films. Energy Environ. Sci. 4(4), 1440–1446 (2011)
124.
Zurück zum Zitat A. Arun, H.L. Poche, T. Idda, D. Acquaviva, M.F.-B. Badia, P. Pantigny, P. Salet, A.M. Ionescu, Tunable MEMS capacitors using vertical carbon nanotube arrays grown on metal lines. Nanotechnology 22(2), 025203 (2011)ADS A. Arun, H.L. Poche, T. Idda, D. Acquaviva, M.F.-B. Badia, P. Pantigny, P. Salet, A.M. Ionescu, Tunable MEMS capacitors using vertical carbon nanotube arrays grown on metal lines. Nanotechnology 22(2), 025203 (2011)ADS
125.
Zurück zum Zitat S.R. Sivakkumar, D.-W. Kim, Polyaniline/carbon nanotube composite cathode for rechargeable lithium polymer batteries assembled with gel polymer electrolyte. J. Electrochem. Soc. 154(2), A134–A139 (2007) S.R. Sivakkumar, D.-W. Kim, Polyaniline/carbon nanotube composite cathode for rechargeable lithium polymer batteries assembled with gel polymer electrolyte. J. Electrochem. Soc. 154(2), A134–A139 (2007)
126.
Zurück zum Zitat A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune, M.J. Heben, Storage of hydrogen in single-walled carbon nanotubes. Nature 386, 3770–0379 (1997) A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune, M.J. Heben, Storage of hydrogen in single-walled carbon nanotubes. Nature 386, 3770–0379 (1997)
127.
Zurück zum Zitat Y. Ye, C.C. Ahn, C. Witham, B. Fultz, J. Liu, A.G. Rinzler, D. Colbert, K.A. Smith, R.E. Smalley, Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Appl. Phys. Lett. 74(16), 2307–2309 (1999)ADS Y. Ye, C.C. Ahn, C. Witham, B. Fultz, J. Liu, A.G. Rinzler, D. Colbert, K.A. Smith, R.E. Smalley, Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Appl. Phys. Lett. 74(16), 2307–2309 (1999)ADS
128.
Zurück zum Zitat C. Liu, Y.Y. Fan, M. Liu, H.T. Cong, H.M. Cheng, M.S. Dresselhaus, Hydrogen storage in single-walled carbon nanotubes at room temperature. Science 286(5442), 1127–1129 (1999) C. Liu, Y.Y. Fan, M. Liu, H.T. Cong, H.M. Cheng, M.S. Dresselhaus, Hydrogen storage in single-walled carbon nanotubes at room temperature. Science 286(5442), 1127–1129 (1999)
129.
Zurück zum Zitat P. Chen, X. Wu, J. Lin, K.L. Tan, High \(\text{H}_2\) uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science 285(5424), 91–93 (1999) P. Chen, X. Wu, J. Lin, K.L. Tan, High \(\text{H}_2\) uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science 285(5424), 91–93 (1999)
130.
Zurück zum Zitat M.S. Dresselhaus, K.A. Williams, P.C. Eklund, Hydrogen adsorption in carbon materials. MRS Bull. 24(11), 45 (1999) M.S. Dresselhaus, K.A. Williams, P.C. Eklund, Hydrogen adsorption in carbon materials. MRS Bull. 24(11), 45 (1999)
131.
Zurück zum Zitat G.G. Tibbetts, G.P. Meisner, C.H. Olk, Hydrogen storage capacity of carbon nanotubes, filaments, and vapor-grown fibers. Carbon 39(15), 2291–2301 (2001) G.G. Tibbetts, G.P. Meisner, C.H. Olk, Hydrogen storage capacity of carbon nanotubes, filaments, and vapor-grown fibers. Carbon 39(15), 2291–2301 (2001)
132.
Zurück zum Zitat M. Hirscher, M. Becher, M. Haluska, A. Quintel, V. Skakalova, Y.-M. Choi, U. Dettlaff-Weglikowska, S. Roth, I. Stepanek, P. Bernier, A. Leonhardt, J. Fink, Hydrogen storage in carbon nanostructures. J. Alloys Compd. 330–332, 654–658 (2002) M. Hirscher, M. Becher, M. Haluska, A. Quintel, V. Skakalova, Y.-M. Choi, U. Dettlaff-Weglikowska, S. Roth, I. Stepanek, P. Bernier, A. Leonhardt, J. Fink, Hydrogen storage in carbon nanostructures. J. Alloys Compd. 330–332, 654–658 (2002)
133.
Zurück zum Zitat C.C. Ahn, Y. Ye, B.V. Ratnakumar, C. Witham, J.R.C. Bowman, B. Fultz, Hydrogen desorption and adsorption measurements on graphite nanofibers. Appl. Phys. Lett. 73(23), pp. 3378–3380 (1998) C.C. Ahn, Y. Ye, B.V. Ratnakumar, C. Witham, J.R.C. Bowman, B. Fultz, Hydrogen desorption and adsorption measurements on graphite nanofibers. Appl. Phys. Lett. 73(23), pp. 3378–3380 (1998)
134.
Zurück zum Zitat P. Kim, C.M. Lieber, Nanotube nanotweezers. Science 286(5447), 2148–2150 (1999) P. Kim, C.M. Lieber, Nanotube nanotweezers. Science 286(5447), 2148–2150 (1999)
135.
Zurück zum Zitat R.H. Baughman, C. Cui, A.A. Zakhidov, Z. Iqbal, J.N. Barisci, G.M. Spinks, G.G. Wallace, A. Mazzoldi, D.D. Rossi, A.G. Rinzler, O. Jaschinski, S. Roth, M. Kertesz, Carbon nanotube actuators. Science 284(5418), 1340–1344 (1999)ADS R.H. Baughman, C. Cui, A.A. Zakhidov, Z. Iqbal, J.N. Barisci, G.M. Spinks, G.G. Wallace, A. Mazzoldi, D.D. Rossi, A.G. Rinzler, O. Jaschinski, S. Roth, M. Kertesz, Carbon nanotube actuators. Science 284(5418), 1340–1344 (1999)ADS
136.
Zurück zum Zitat V.V. Deshpande, H.-Y. Chiu, H.W.C. Postma, C. Mikó, L. Forró, M. Bockrath, Carbon nanotube linear bearing nanoswitches. Nano Lett. 6(6), 1092–1095 (2006)ADS V.V. Deshpande, H.-Y. Chiu, H.W.C. Postma, C. Mikó, L. Forró, M. Bockrath, Carbon nanotube linear bearing nanoswitches. Nano Lett. 6(6), 1092–1095 (2006)ADS
137.
Zurück zum Zitat U. Vohrer, I. Kolaric, M.H. Haque, S. Roth, U. Detlaff-Weglikowska, Carbon nanotube sheets for the use as artificial muscles. Carbon 42(5–6), 1159–1164 (2004) U. Vohrer, I. Kolaric, M.H. Haque, S. Roth, U. Detlaff-Weglikowska, Carbon nanotube sheets for the use as artificial muscles. Carbon 42(5–6), 1159–1164 (2004)
138.
Zurück zum Zitat S. Gupta, M. Hughes, A.H. Windle, J. Robertson, Charge transfer in carbon nanotube actuators investigated using in situ raman spectroscopy. J. Appl. Phys. 95(4), 2038–2048 (2004)ADS S. Gupta, M. Hughes, A.H. Windle, J. Robertson, Charge transfer in carbon nanotube actuators investigated using in situ raman spectroscopy. J. Appl. Phys. 95(4), 2038–2048 (2004)ADS
139.
Zurück zum Zitat V.H. Ebron, Z. Yang, D.J. Seyer, M.E. Kozlov, J. Oh, H. Xie, J. Razal, L.J. Hall, J.P. Ferraris, A.G. MacDiarmid, R.H. Baughman, Fuel-powered artificial muscles. Science 311(5767), 1580–1583 (2006)ADS V.H. Ebron, Z. Yang, D.J. Seyer, M.E. Kozlov, J. Oh, H. Xie, J. Razal, L.J. Hall, J.P. Ferraris, A.G. MacDiarmid, R.H. Baughman, Fuel-powered artificial muscles. Science 311(5767), 1580–1583 (2006)ADS
140.
Zurück zum Zitat G. Spinks, G. Wallace, L. Fifield, L. Dalton, A. Mazzoldi, D. De Rossi, I. Khayrullin, R. Baughman, Pneumatic carbon nanotube actuators. Adv. Mater. 14(23), 1728–1732 (2002) G. Spinks, G. Wallace, L. Fifield, L. Dalton, A. Mazzoldi, D. De Rossi, I. Khayrullin, R. Baughman, Pneumatic carbon nanotube actuators. Adv. Mater. 14(23), 1728–1732 (2002)
141.
Zurück zum Zitat S.V. Ahir, E.M. Terentjev, Photomechanical actuation in polymer-nanotube composites. Nat. Mater. 4(6), 491–495 (2005)ADS S.V. Ahir, E.M. Terentjev, Photomechanical actuation in polymer-nanotube composites. Nat. Mater. 4(6), 491–495 (2005)ADS
142.
Zurück zum Zitat A.R.T.S. Courty, J. Mine, E.M. Terentjev, Nematic elastomers with aligned carbon nanotubes: New electromechanical actuators. Europhys. Lett. 64(5), 654–660 (2003)ADS A.R.T.S. Courty, J. Mine, E.M. Terentjev, Nematic elastomers with aligned carbon nanotubes: New electromechanical actuators. Europhys. Lett. 64(5), 654–660 (2003)ADS
143.
Zurück zum Zitat H. Koerner, G. Price, N.A. Pearce, M. Alexander, R.A. Vaia, Remotely actuated polymer nanocomposites: stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nat. Mater. 3, 115–120 (2004)ADS H. Koerner, G. Price, N.A. Pearce, M. Alexander, R.A. Vaia, Remotely actuated polymer nanocomposites: stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nat. Mater. 3, 115–120 (2004)ADS
144.
Zurück zum Zitat P. Miaudet, A. Derré, M. Maugey, C. Zakri, P.M. Piccione, R. Inoubli, P. Poulin, Shape and temperature memory of nanocomposites with broadened glass transition. Science 318(5854), 1294–1296 (2007)ADS P. Miaudet, A. Derré, M. Maugey, C. Zakri, P.M. Piccione, R. Inoubli, P. Poulin, Shape and temperature memory of nanocomposites with broadened glass transition. Science 318(5854), 1294–1296 (2007)ADS
145.
Zurück zum Zitat A.E. Aliev, J. Oh, M.E. Kozlov, A.A. Kuznetsov, S. Fang, A.F. Fonseca, R. Ovalle, M.D. Lima, M.H. Haque, Y.N. Gartstein, M. Zhang, A.A. Zakhidov, R.H. Baughman, Giant-stroke, superelastic carbon nanotube aerogel muscles. Science 323(5921), 1575–1578 (2009)ADS A.E. Aliev, J. Oh, M.E. Kozlov, A.A. Kuznetsov, S. Fang, A.F. Fonseca, R. Ovalle, M.D. Lima, M.H. Haque, Y.N. Gartstein, M. Zhang, A.A. Zakhidov, R.H. Baughman, Giant-stroke, superelastic carbon nanotube aerogel muscles. Science 323(5921), 1575–1578 (2009)ADS
146.
Zurück zum Zitat P. Mérel, J.A. Kpetsu, C. Koechlin, S. Maine, R. Haidar, J. Pélouard, A. Sarkissian, M.I. Ionescu, X. Sun, P. Laou, S. Paradis, Infrared sensors based on multi-wall carbon nanotube films. C. R. Phys. 11(5–6), 375–380 (2010)ADS P. Mérel, J.A. Kpetsu, C. Koechlin, S. Maine, R. Haidar, J. Pélouard, A. Sarkissian, M.I. Ionescu, X. Sun, P. Laou, S. Paradis, Infrared sensors based on multi-wall carbon nanotube films. C. R. Phys. 11(5–6), 375–380 (2010)ADS
147.
Zurück zum Zitat K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D.N. Futaba, M. Yumura, K. Hata, A black body absorber from vertically aligned single-walled carbon nanotubes. Proc. Natl. Acad. Sci. U S A 106(15), 6044–6047 (2009)ADS K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D.N. Futaba, M. Yumura, K. Hata, A black body absorber from vertically aligned single-walled carbon nanotubes. Proc. Natl. Acad. Sci. U S A 106(15), 6044–6047 (2009)ADS
148.
Zurück zum Zitat J.M. Xu, Highly ordered carbon nanotube arrays and IR detection. Infrared Phys. Technol. 42(3–5), 485–491 (2001)ADS J.M. Xu, Highly ordered carbon nanotube arrays and IR detection. Infrared Phys. Technol. 42(3–5), 485–491 (2001)ADS
149.
Zurück zum Zitat B.J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas, L.G. Bachas, Aligned multiwalled carbon nanotube membranes. Science 303(5654), 62–65 (2004)ADS B.J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas, L.G. Bachas, Aligned multiwalled carbon nanotube membranes. Science 303(5654), 62–65 (2004)ADS
150.
Zurück zum Zitat V.K.K. Upadhyayula, S.G. Deng, M.C. Mitchell, G.B. Smith, Application of carbon nanotube technology for removal of contaminants in drinking water: A review. Sci. Total Environ. 408(1), 1–13 (2009) V.K.K. Upadhyayula, S.G. Deng, M.C. Mitchell, G.B. Smith, Application of carbon nanotube technology for removal of contaminants in drinking water: A review. Sci. Total Environ. 408(1), 1–13 (2009)
151.
Zurück zum Zitat B. Hinds, Dramatic transport properties of carbon nanotube membranes for a robust protein channel mimetic platform. Curr. Opin. Solid St. M. 16(1), 1–9 (2011) B. Hinds, Dramatic transport properties of carbon nanotube membranes for a robust protein channel mimetic platform. Curr. Opin. Solid St. M. 16(1), 1–9 (2011)
152.
Zurück zum Zitat F. Du, L. Qu, Z. Xia, L. Feng, L. Dai, Membranes of vertically aligned superlong carbon nanotubes. Langmuir 27(13), 8437–8443 (2011) F. Du, L. Qu, Z. Xia, L. Feng, L. Dai, Membranes of vertically aligned superlong carbon nanotubes. Langmuir 27(13), 8437–8443 (2011)
153.
Zurück zum Zitat Y. Abdi, M. Khalilian, E. Arzi, Enhancement in photo-induced hydrophilicity of \(TiO_2\)/CNT nanostructures by applying voltage. J. Phys. D: Appl. Phys. 44(25), 255405 (2011) Y. Abdi, M. Khalilian, E. Arzi, Enhancement in photo-induced hydrophilicity of \(TiO_2\)/CNT nanostructures by applying voltage. J. Phys. D: Appl. Phys. 44(25), 255405 (2011)
154.
Zurück zum Zitat A. Arun, D. Acquaviva, M. Fernñdez-Bolaós, P. Salet, H. Le-Poche, P. Pantigny, T. Idda, A. Ionescu, Carbon nanotube vertical membranes for electrostatically actuated micro-electro-mechanical devices. Microelectron. Eng. 87(5–8), 1281–1283 (2010) A. Arun, D. Acquaviva, M. Fernñdez-Bolaós, P. Salet, H. Le-Poche, P. Pantigny, T. Idda, A. Ionescu, Carbon nanotube vertical membranes for electrostatically actuated micro-electro-mechanical devices. Microelectron. Eng. 87(5–8), 1281–1283 (2010)
155.
Zurück zum Zitat A. Arun, S. Campidelli, A. Filoramo, V. Derycke, P. Salet, A.M. Ionescu, M.F. Goffman, SWNT array resonant gate MOS transistors. Nanotechnology 22(5), 055204 (2011)ADS A. Arun, S. Campidelli, A. Filoramo, V. Derycke, P. Salet, A.M. Ionescu, M.F. Goffman, SWNT array resonant gate MOS transistors. Nanotechnology 22(5), 055204 (2011)ADS
156.
Zurück zum Zitat F.A. Ghavanini, P. Enoksson, S. Bengtsson, P. Lundgren, Vertically aligned carbon based varactors. J. Appl. Phys. 110(2), 021101 (2011)ADS F.A. Ghavanini, P. Enoksson, S. Bengtsson, P. Lundgren, Vertically aligned carbon based varactors. J. Appl. Phys. 110(2), 021101 (2011)ADS
157.
Zurück zum Zitat C.J. Hu, Y.H. Lin, C.W. Tang, M.Y. Tsai, W.K. Hsu, H.F. Kuo, ZnO-coated carbon nanotubes: Flexible piezoelectric generators. Adv. Mater. 23(26), 2941–2945 (2011) C.J. Hu, Y.H. Lin, C.W. Tang, M.Y. Tsai, W.K. Hsu, H.F. Kuo, ZnO-coated carbon nanotubes: Flexible piezoelectric generators. Adv. Mater. 23(26), 2941–2945 (2011)
158.
Zurück zum Zitat Y. Liu, I. Janowska, T. Romero, D. Edouard, L.D. Nguyen, O. Ersen, V. Keller, N. Keller, C. Pham-Huu, High surface-to-volume hybrid platelet reactor filled with catalytically grown vertically aligned carbon nanotubes. Catal. Today 150(1–2), 133–139 (2010) Y. Liu, I. Janowska, T. Romero, D. Edouard, L.D. Nguyen, O. Ersen, V. Keller, N. Keller, C. Pham-Huu, High surface-to-volume hybrid platelet reactor filled with catalytically grown vertically aligned carbon nanotubes. Catal. Today 150(1–2), 133–139 (2010)
159.
Zurück zum Zitat J. Luo, L.P. Mark, A.E. Giannakopulos, A.W. Colburn, J.V. Macpherson, T. Drewello, P.J. Derrick, A.S. Teh, K.B. Teo, W.I. Milne, Field ionization using densely spaced arrays of nickel-tipped carbon nanotubes. Chem. Phys. Lett. 505(4–6), 126–129 (2011)ADS J. Luo, L.P. Mark, A.E. Giannakopulos, A.W. Colburn, J.V. Macpherson, T. Drewello, P.J. Derrick, A.S. Teh, K.B. Teo, W.I. Milne, Field ionization using densely spaced arrays of nickel-tipped carbon nanotubes. Chem. Phys. Lett. 505(4–6), 126–129 (2011)ADS
160.
Zurück zum Zitat K. Han, Y. Lee, D. Jun, S. Lee, K.W. Jung, S.S. Yang, Field emission ion source using a carbon nanotube array for micro time-of-flight mass spectrometer. Jpn. J. Appl. Phys. 50(6), 06GM04, (2011) K. Han, Y. Lee, D. Jun, S. Lee, K.W. Jung, S.S. Yang, Field emission ion source using a carbon nanotube array for micro time-of-flight mass spectrometer. Jpn. J. Appl. Phys. 50(6), 06GM04, (2011)
161.
Zurück zum Zitat B.K. Sarker, M.R. Islam, F. Alzubi, S.I. Khondaker, Fabrication of aligned carbon nanotube array electrodes for organic electronic devices. Mater. Exp. 1(1), 80–85 (2011) B.K. Sarker, M.R. Islam, F. Alzubi, S.I. Khondaker, Fabrication of aligned carbon nanotube array electrodes for organic electronic devices. Mater. Exp. 1(1), 80–85 (2011)
162.
Zurück zum Zitat M. De Volder, S.H. Tawfick, D. Copic, A.J. Hart, Hydrogel-driven carbon nanotube microtransducers. Soft Matter 7(21), 9844–9847 (2011)ADS M. De Volder, S.H. Tawfick, D. Copic, A.J. Hart, Hydrogel-driven carbon nanotube microtransducers. Soft Matter 7(21), 9844–9847 (2011)ADS
163.
Zurück zum Zitat C. Yuana, C. Chang, Y. Song, Hazardous industrial gases identified using a novel polymer/MWNT composite resistance sensor array. Mat. Sci. Eng. B: Solid 176(11), 821–829 (2011) C. Yuana, C. Chang, Y. Song, Hazardous industrial gases identified using a novel polymer/MWNT composite resistance sensor array. Mat. Sci. Eng. B: Solid 176(11), 821–829 (2011)
164.
Zurück zum Zitat A. Di Bartolomeo, M. Sarno, F. Giubileo, C. Altavilla, L. Iemmo, S. Piano, F. Bobba, M. Longobardi, A. Scarfato, D. Sannino, A.M. Cucolo, P. Ciambelli, Multiwalled carbon nanotube films as small-sized temperature sensors. J. Appl. Phys. 105, 064518 (2009)ADS A. Di Bartolomeo, M. Sarno, F. Giubileo, C. Altavilla, L. Iemmo, S. Piano, F. Bobba, M. Longobardi, A. Scarfato, D. Sannino, A.M. Cucolo, P. Ciambelli, Multiwalled carbon nanotube films as small-sized temperature sensors. J. Appl. Phys. 105, 064518 (2009)ADS
165.
Zurück zum Zitat C. Kocabas, H. sik Kim, T. Banks, J.A. Rogers, A.A. Pesetski, J.E. Baumgardner, S.V. Krishnaswamy, H. Zhang, Radio frequency analog electronics based on carbonnanotube transistors. Proc. Natl. Acad. Sci. U S A 105(5), 1405–1409 (2008) C. Kocabas, H. sik Kim, T. Banks, J.A. Rogers, A.A. Pesetski, J.E. Baumgardner, S.V. Krishnaswamy, H. Zhang, Radio frequency analog electronics based on carbonnanotube transistors. Proc. Natl. Acad. Sci. U S A 105(5), 1405–1409 (2008)
Metadaten
Titel
Potential Applications of Carbon Nanotube Arrays
verfasst von
Zhifeng Ren
Yucheng Lan
Yang Wang
Copyright-Jahr
2013
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-30490-3_9

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.