Skip to main content
Erschienen in: Social Choice and Welfare 1/2015

01.06.2015

Poverty: fuzzy measurement and crisp ordering

verfasst von: Buhong Zheng

Erschienen in: Social Choice and Welfare | Ausgabe 1/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper we make several contributions to the literature of poverty measurement. We first identify a plausible source for the fuzziness in poverty identification which renders a natural and direct estimation of the poverty membership function; we then provide an axiomatic characterization for an important class of fuzzy poverty measures; and we finally derive a set of crisp dominance conditions for fuzzy partial poverty orderings. We also illustrate the results with the US CPS data.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Two other new directions are multidimensional poverty measurement and partial poverty orderings, respectively. Multidimensional poverty measurement is based on the argument that an individual’s welfare is essentially multidimensional and hence an individual’s poverty status must also be evaluated from a multidimensional perspective. Contributions to this research include Tsui (2002), Bourguignon and Chakravarty (2003), Duclos et al. (2006), and Alkire and Foster (2011). The research on partial poverty orderings accepts the use of a single poverty line but the exact location of the line is uncertain and may vary within a range. The research seeks conditions under which poverty rankings remain valid for a range of poverty lines. Contributions to this area of research include Atkinson (1987), Foster and Shorrocks (1988), Jenkins and Lambert (1997), and Zheng (1999).
 
2
These two conditions ensure that a poverty measure satisfies the monotonicity axiom (poverty is reduced if the income of a poor individual is increased) and the transfer axiom (poverty is reduced by a progressive transfer of income among the poor). For surveys on poverty axioms, poverty measures and poverty orderings, see Zheng (1997, 2000), Lambert (2001) and, more recently, Chakravarty (2009).
 
3
In some elections such as the US presidential election, this axiom is violated as voters in different states carry different weights. In the US gubernatorial and other local elections, however, this axiom is satisfied.
 
4
An example of \(\rho (z)\) is
$$\begin{aligned} \rho (z)=\left\{ \begin{array}{cc} \gamma c+\theta &{}\, \text {if }z_{l}<z<c \\ \gamma z+\theta &{} \text {if }c<z<d \\ \gamma d+\theta &{}\,\,\, \text {if }d<z<z_{u} \end{array} \right. \end{aligned}$$
where \(\gamma >0\) and \(\theta >0\) satisfy
$$\begin{aligned} w\gamma +(z_{u}-z_{l})\theta =1 \end{aligned}$$
with \(w=\frac{1}{2}(c^{2}-d^{2})-cz_{l}+dz_{u}>0\). It is easy to verify that such a \(\rho (z)\) is a “density function” for a poverty membership function. Note that the definition excludes a small neighborhood at \(z_{l}\) and \(z_{u}\) to enable \(\rho (z_{l})=\rho (z_{u})=0\).
 
5
Note that the dominance conditions derived for crisp decomposable measures often are only sufficient for rank-based poverty measures such as the Sen measure—see Zheng (2000) for a detailed exposition.
 
6
One could also consider a more general intermediate poverty measure, \(\tilde{ p}(\frac{z-x}{z^{\eta }})\), which contains both relative and absolute measures as special cases (\(\eta =1\) and \(0\), respectively). For a general treatment of intermediate poverty measures, see Zheng (2007).
 
7
We do not illustrate Propositions 4.2 and 4.3 since they require the estimation of poverty membership functions which is not feasible with the CPS data.
 
8
The author of this paper is currently engaging in collaborations in estimating the poverty membership functions using the World Bank’s LSMS data and EU’s SILC data.
 
Literatur
Zurück zum Zitat Alkire S, Foster J (2011) Counting and multidimensional poverty measurement. J Public Econ 95:476–487CrossRef Alkire S, Foster J (2011) Counting and multidimensional poverty measurement. J Public Econ 95:476–487CrossRef
Zurück zum Zitat Atkinson A (1987) On the measurement of poverty. Econometrica 55:244–263CrossRef Atkinson A (1987) On the measurement of poverty. Econometrica 55:244–263CrossRef
Zurück zum Zitat Beliakov G (1996) Fuzzy sets and membership functions based on probabilities. Inf Sci 91:95–111CrossRef Beliakov G (1996) Fuzzy sets and membership functions based on probabilities. Inf Sci 91:95–111CrossRef
Zurück zum Zitat Bourguignon F, Chakravarty S (2003) The measurement of multidimensional poverty. J Econ Inequal 1:25–49 Bourguignon F, Chakravarty S (2003) The measurement of multidimensional poverty. J Econ Inequal 1:25–49
Zurück zum Zitat Cerioli A, Zani S (1990) A fuzzy approach to the measurement of poverty. In: Dagum C, Zenga M (eds) Income and wealth distribution, inequality and poverty. Springer-Verlag, New York Cerioli A, Zani S (1990) A fuzzy approach to the measurement of poverty. In: Dagum C, Zenga M (eds) Income and wealth distribution, inequality and poverty. Springer-Verlag, New York
Zurück zum Zitat Chakravarty S (2006) An axiomatic approach to multidimensional poverty measurement via fuzzy sets. In: Lemmi A, Betti G (eds) Fuzzy set approach to multidimensional poverty measurement. Springer, New York Chakravarty S (2006) An axiomatic approach to multidimensional poverty measurement via fuzzy sets. In: Lemmi A, Betti G (eds) Fuzzy set approach to multidimensional poverty measurement. Springer, New York
Zurück zum Zitat Chakravarty S (2009) Inequality, polarization and poverty: advances in distributional analysis. Springer-Verlag, New YorkCrossRef Chakravarty S (2009) Inequality, polarization and poverty: advances in distributional analysis. Springer-Verlag, New YorkCrossRef
Zurück zum Zitat Cheli B, Lemmi A (1995) A “totally” fuzzy and relative approach to the multidimensional analysis of poverty. Econ Notes 24:115–134 Cheli B, Lemmi A (1995) A “totally” fuzzy and relative approach to the multidimensional analysis of poverty. Econ Notes 24:115–134
Zurück zum Zitat Dennemeyer R (1968) Introduction to partial differential equations and boundary value problems. McGraw-Hill Book Company, New York Dennemeyer R (1968) Introduction to partial differential equations and boundary value problems. McGraw-Hill Book Company, New York
Zurück zum Zitat Dombi J (1990) Membership functions as an evaluation. Fuzzy Sets Syst 35:1–21CrossRef Dombi J (1990) Membership functions as an evaluation. Fuzzy Sets Syst 35:1–21CrossRef
Zurück zum Zitat Dubois D, Prade H (1985) Fuzzy sets and systems: theory and applications. Academic Press, New York Dubois D, Prade H (1985) Fuzzy sets and systems: theory and applications. Academic Press, New York
Zurück zum Zitat Duclos J, Sahn D, Younger S (2006) Robust multidimensional poverty comparisons. Econ J 116:943–968CrossRef Duclos J, Sahn D, Younger S (2006) Robust multidimensional poverty comparisons. Econ J 116:943–968CrossRef
Zurück zum Zitat Foster J, Shorrocks A (1988) Poverty orderings. Econometrica 56:173–177CrossRef Foster J, Shorrocks A (1988) Poverty orderings. Econometrica 56:173–177CrossRef
Zurück zum Zitat Hisdal E (1986) Infinite-valued logic based on two-valued logic and probability. Part 1. 2. Different sources of fuzziness. Int J Man-Mach Stud 25:113–138 Hisdal E (1986) Infinite-valued logic based on two-valued logic and probability. Part 1. 2. Different sources of fuzziness. Int J Man-Mach Stud 25:113–138
Zurück zum Zitat Jenkins S, Lambert P (1997) ‘Three ‘I’s of poverty curves, with an analysis of U.K. poverty trends. Oxf Econ Pap 49:317–327CrossRef Jenkins S, Lambert P (1997) ‘Three ‘I’s of poverty curves, with an analysis of U.K. poverty trends. Oxf Econ Pap 49:317–327CrossRef
Zurück zum Zitat Keefe R, Smith P (1996) Vagueness: a reader. MIT Press, Cambridge Keefe R, Smith P (1996) Vagueness: a reader. MIT Press, Cambridge
Zurück zum Zitat Klir G, Yuan B (1995) Fuzzy sets and fuzzy logic: theory and applications. Prentice Hall, Upper Saddle River Klir G, Yuan B (1995) Fuzzy sets and fuzzy logic: theory and applications. Prentice Hall, Upper Saddle River
Zurück zum Zitat Lambert P (2001) The distribution and redistribution of income, 3rd edn. Manchester University Press, Manchester Lambert P (2001) The distribution and redistribution of income, 3rd edn. Manchester University Press, Manchester
Zurück zum Zitat Precup R, Hellendoorn H (2011) A survey on industrial applications of fuzzy control. Comput Ind 62:213–226CrossRef Precup R, Hellendoorn H (2011) A survey on industrial applications of fuzzy control. Comput Ind 62:213–226CrossRef
Zurück zum Zitat Qizilbash M (2006) Philosophical accounts of vagueness, fuzzy poverty measures and multidimensionality. In: Lemmi A, Betti G (eds) Fuzzy set approach to multidimensional poverty measurement. Springer, New York Qizilbash M (2006) Philosophical accounts of vagueness, fuzzy poverty measures and multidimensionality. In: Lemmi A, Betti G (eds) Fuzzy set approach to multidimensional poverty measurement. Springer, New York
Zurück zum Zitat Sainsbury M (1991) Is there higher-order vagueness? Philos Q 41:167–182CrossRef Sainsbury M (1991) Is there higher-order vagueness? Philos Q 41:167–182CrossRef
Zurück zum Zitat Sen A (1981) Poverty and famine. Clarendon Press, Oxford Sen A (1981) Poverty and famine. Clarendon Press, Oxford
Zurück zum Zitat Sen A (1976) Poverty: an ordinal approach to measurement. Econometrica 44:219–231CrossRef Sen A (1976) Poverty: an ordinal approach to measurement. Econometrica 44:219–231CrossRef
Zurück zum Zitat Shorrocks A, Subramanian S (1994) Fuzzy poverty indices, working paper, University of Essex Shorrocks A, Subramanian S (1994) Fuzzy poverty indices, working paper, University of Essex
Zurück zum Zitat Tsui K (2002) Multidimensional poverty indices. Soc Choice Welf 19:69–93CrossRef Tsui K (2002) Multidimensional poverty indices. Soc Choice Welf 19:69–93CrossRef
Zurück zum Zitat Zheng B (1999) On the power of poverty orderings. Soc Choice Welf 16:349–371CrossRef Zheng B (1999) On the power of poverty orderings. Soc Choice Welf 16:349–371CrossRef
Zurück zum Zitat Zheng B (2007) Unit-consistent poverty indices. Econ Theory 31:113–142CrossRef Zheng B (2007) Unit-consistent poverty indices. Econ Theory 31:113–142CrossRef
Metadaten
Titel
Poverty: fuzzy measurement and crisp ordering
verfasst von
Buhong Zheng
Publikationsdatum
01.06.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Social Choice and Welfare / Ausgabe 1/2015
Print ISSN: 0176-1714
Elektronische ISSN: 1432-217X
DOI
https://doi.org/10.1007/s00355-015-0873-8

Weitere Artikel der Ausgabe 1/2015

Social Choice and Welfare 1/2015 Zur Ausgabe