Skip to main content

2024 | OriginalPaper | Buchkapitel

Power Analysis Side-Channel Attacks on Same and Cross-Device Settings: A Survey of Machine Learning Techniques

verfasst von : Ashutosh Ghimire, Vishnu Vardhan Baligodugula, Fathi Amsaad

Erschienen in: Internet of Things. Advances in Information and Communication Technology

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Systems that use secret keys or personal details are seriously at risk from side-channel attacks, especially if they rely on power analysis. Attackers can use unintentional sources like power consumption and electromagnetic waves to extract sensitive information. Recently, machine learning has become a promising approach for executing power side-channel attacks that are efficient and effective for single and cross-device environments. This paper reviews various machine learning-based power side-channel attacks, including feature extraction techniques, classification methods, and countermeasures. This survey investigates same-device and cross-device attacks that use multiple devices for training an artificial intelligence model for this purpose. It examines the strengths and limitations of various machine learning algorithms and suggests areas for future research to address challenges.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cao, P., Zhang, C., Lu, X., Gu, D.: Cross-device profiled side-channel attack with unsupervised domain adaptation. IACR Trans. Cryptograph. Hardw. Embed. Syst. 27–56 (2021) Cao, P., Zhang, C., Lu, X., Gu, D.: Cross-device profiled side-channel attack with unsupervised domain adaptation. IACR Trans. Cryptograph. Hardw. Embed. Syst. 27–56 (2021)
2.
Zurück zum Zitat Chapagain, A., Ghimire, A., Joshi, A., Jaiswal, A.: Predicting breast cancer using support vector machine learning algorithm. Int. Res. J. Innov. Eng. Technol. 4(5), 10 (2020) Chapagain, A., Ghimire, A., Joshi, A., Jaiswal, A.: Predicting breast cancer using support vector machine learning algorithm. Int. Res. J. Innov. Eng. Technol. 4(5), 10 (2020)
3.
Zurück zum Zitat Das, D., Golder, A., Danial, J., Ghosh, S., Raychowdhury, A., Sen, S.: X-deepSCA: cross-device deep learning side channel attack. In: Proceedings of the 56th Annual Design Automation Conference 2019, pp. 1–6 (2019) Das, D., Golder, A., Danial, J., Ghosh, S., Raychowdhury, A., Sen, S.: X-deepSCA: cross-device deep learning side channel attack. In: Proceedings of the 56th Annual Design Automation Conference 2019, pp. 1–6 (2019)
4.
Zurück zum Zitat Ghimire, A., Tayara, H., Xuan, Z., Chong, K.T.: CSATDTA: prediction of drug-target binding affinity using convolution model with self-attention. Int. J. Mol. Sci. 23(15), 8453 (2022)CrossRef Ghimire, A., Tayara, H., Xuan, Z., Chong, K.T.: CSATDTA: prediction of drug-target binding affinity using convolution model with self-attention. Int. J. Mol. Sci. 23(15), 8453 (2022)CrossRef
5.
Zurück zum Zitat Golder, A., Das, D., Danial, J., Ghosh, S., Sen, S., Raychowdhury, A.: Practical approaches toward deep-learning-based cross-device power side-channel attack. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 27(12), 2720–2733 (2019) Golder, A., Das, D., Danial, J., Ghosh, S., Sen, S., Raychowdhury, A.: Practical approaches toward deep-learning-based cross-device power side-channel attack. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 27(12), 2720–2733 (2019)
6.
Zurück zum Zitat Hanley, N., O’Neill, M., Tunstall, M., Marnane, W.P.: Empirical evaluation of multi-device profiling side-channel attacks. In: 2014 IEEE Workshop on Signal Processing Systems (SiPS), pp. 1–6. IEEE (2014) Hanley, N., O’Neill, M., Tunstall, M., Marnane, W.P.: Empirical evaluation of multi-device profiling side-channel attacks. In: 2014 IEEE Workshop on Signal Processing Systems (SiPS), pp. 1–6. IEEE (2014)
8.
Zurück zum Zitat Hu, F., Ni, F.: Software implementation of AES-128: side channel attacks based on power traces decomposition. In: 2022 International Conference on Cyber Warfare and Security (ICCWS), pp. 14–21. IEEE (2022) Hu, F., Ni, F.: Software implementation of AES-128: side channel attacks based on power traces decomposition. In: 2022 International Conference on Cyber Warfare and Security (ICCWS), pp. 14–21. IEEE (2022)
9.
Zurück zum Zitat Hu, F., Wang, H., Wang, J.: Cross-subkey deep-learning side-channel analysis. IACR Cryptology ePrint Archive 2021, 1328 (2021) Hu, F., Wang, H., Wang, J.: Cross-subkey deep-learning side-channel analysis. IACR Cryptology ePrint Archive 2021, 1328 (2021)
10.
Zurück zum Zitat Hu, F., Wang, H., Wang, J.: Side-channel attacks based on power trace decomposition. Cryptology ePrint Archive (2022) Hu, F., Wang, H., Wang, J.: Side-channel attacks based on power trace decomposition. Cryptology ePrint Archive (2022)
11.
Zurück zum Zitat Jin, S., Kim, S., Kim, H., Hong, S.: Recent advances in deep learning-based side-channel analysis. ETRI J. 42(2), 292–304 (2020)MathSciNetCrossRef Jin, S., Kim, S., Kim, H., Hong, S.: Recent advances in deep learning-based side-channel analysis. ETRI J. 42(2), 292–304 (2020)MathSciNetCrossRef
12.
Zurück zum Zitat Kashyap, P., Aydin, F., Potluri, S., Franzon, P.D., Aysu, A.: 2Deep: enhancing side-channel attacks on lattice-based key-exchange via 2-D deep learning. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 40(6), 1217–1229 (2020)CrossRef Kashyap, P., Aydin, F., Potluri, S., Franzon, P.D., Aysu, A.: 2Deep: enhancing side-channel attacks on lattice-based key-exchange via 2-D deep learning. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 40(6), 1217–1229 (2020)CrossRef
13.
Zurück zum Zitat Koblah, D.S., et al.: A survey and perspective on artificial intelligence for security-aware electronic design automation. ACM Trans. Des. Autom. Electron. Syst. (TODAES) (2022) Koblah, D.S., et al.: A survey and perspective on artificial intelligence for security-aware electronic design automation. ACM Trans. Des. Autom. Electron. Syst. (TODAES) (2022)
14.
Zurück zum Zitat Meshgi, H., Khazaee, M.E., Kasiri, B., Shahhoseini, H.S.: An efficient algorithm resistant to spa and DPA variants in ECC. In: 2008 1st IFIP Wireless Days, pp. 1–5. IEEE (2008) Meshgi, H., Khazaee, M.E., Kasiri, B., Shahhoseini, H.S.: An efficient algorithm resistant to spa and DPA variants in ECC. In: 2008 1st IFIP Wireless Days, pp. 1–5. IEEE (2008)
16.
Zurück zum Zitat Randolph, M., Diehl, W.: Power side-channel attack analysis: a review of 20 years of study for the layman. Cryptography 4(2), 15 (2020)CrossRef Randolph, M., Diehl, W.: Power side-channel attack analysis: a review of 20 years of study for the layman. Cryptography 4(2), 15 (2020)CrossRef
17.
Zurück zum Zitat Thapar, D., Alam, M., Mukhopadhyay, D.: Deep learning assisted cross-family profiled side-channel attacks using transfer learning. In: 2021 22nd International Symposium on Quality Electronic Design (ISQED), pp. 178–185. IEEE (2021) Thapar, D., Alam, M., Mukhopadhyay, D.: Deep learning assisted cross-family profiled side-channel attacks using transfer learning. In: 2021 22nd International Symposium on Quality Electronic Design (ISQED), pp. 178–185. IEEE (2021)
18.
Zurück zum Zitat Wang, H.: Side-channel analysis of AES based on deep learning (2019) Wang, H.: Side-channel analysis of AES based on deep learning (2019)
20.
Zurück zum Zitat Wang, H., Dubrova, E.: Tandem deep learning side-channel attack on FPGA implementation of AES. SN Comput. Sci. 2, 1–12 (2021)CrossRef Wang, H., Dubrova, E.: Tandem deep learning side-channel attack on FPGA implementation of AES. SN Comput. Sci. 2, 1–12 (2021)CrossRef
21.
Zurück zum Zitat Wolf, S., Hu, H., Cooley, R., Borowczak, M.: Stealing machine learning parameters via side channel power attacks. In: 2021 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp. 242–247. IEEE (2021) Wolf, S., Hu, H., Cooley, R., Borowczak, M.: Stealing machine learning parameters via side channel power attacks. In: 2021 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp. 242–247. IEEE (2021)
22.
Zurück zum Zitat Yu, H., Shan, H., Panoff, M., Jin, Y.: Cross-device profiled side-channel attacks using meta-transfer learning. In: 2021 58th ACM/IEEE Design Automation Conference (DAC), pp. 703–708. IEEE (2021) Yu, H., Shan, H., Panoff, M., Jin, Y.: Cross-device profiled side-channel attacks using meta-transfer learning. In: 2021 58th ACM/IEEE Design Automation Conference (DAC), pp. 703–708. IEEE (2021)
23.
Zurück zum Zitat Yu, H., et al.: Noise2clean: cross-device side-channel traces denoising with unsupervised deep learning. Electronics 12(4), 1054 (2023)CrossRef Yu, H., et al.: Noise2clean: cross-device side-channel traces denoising with unsupervised deep learning. Electronics 12(4), 1054 (2023)CrossRef
24.
Zurück zum Zitat Zhang, L., Xing, X., Fan, J., Wang, Z., Wang, S.: Multilabel deep learning-based side-channel attack. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 40(6), 1207–1216 (2020)CrossRef Zhang, L., Xing, X., Fan, J., Wang, Z., Wang, S.: Multilabel deep learning-based side-channel attack. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 40(6), 1207–1216 (2020)CrossRef
Metadaten
Titel
Power Analysis Side-Channel Attacks on Same and Cross-Device Settings: A Survey of Machine Learning Techniques
verfasst von
Ashutosh Ghimire
Vishnu Vardhan Baligodugula
Fathi Amsaad
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-45882-8_24