Skip to main content
Erschienen in:

19.12.2023

Power–Area-Optimized Approximate Multiplier Design for Image Fusion

verfasst von: Garima Thakur, Harsh Sohal, Shruti Jain

Erschienen in: Circuits, Systems, and Signal Processing | Ausgabe 4/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, three approximate multiplier architectures are proposed: area-optimized approximate multiplier (AOM), power-optimized approximate multiplier (POM), and power- and area-optimized approximate multiplier (PAOM). These designs are implemented using speculative Han–Carlson adder and compressor-based multiplier blocks. Han–Carlson adder is used as the basic adder block in the final addition stage of all the three approximate multiplier designs. Different types of compressors (3:2, 4:2, 5:2, 6:2, 7:2, 8:2) are used for the implementation of the energy-efficient approximate multiplier blocks. All the simulations are performed on VIVADO design tool. Also, the designed multipliers are validated for image blending (an error-tolerant) application. The proposed power optimization approximate multiplier shows 0.86%, 10.54% PSNR improvement in comparison with area optimization approximate multiplier and power and area optimization approximate multiplier, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelektronik

Die Fachzeitschrift ATZelektronik bietet für Entwickler und Entscheider in der Automobil- und Zulieferindustrie qualitativ hochwertige und fundierte Informationen aus dem gesamten Spektrum der Pkw- und Nutzfahrzeug-Elektronik. 

Lassen Sie sich jetzt unverbindlich 2 kostenlose Ausgabe zusenden.

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat M. Ahmadinejad, M.H. Moaiyeri, Energy- and quality-efficient approximate multipliers for neural network and image processing applications. IEEE Trans. Emerg. Top. Comput. 10(2), 1105–1116 (2021) M. Ahmadinejad, M.H. Moaiyeri, Energy- and quality-efficient approximate multipliers for neural network and image processing applications. IEEE Trans. Emerg. Top. Comput. 10(2), 1105–1116 (2021)
2.
Zurück zum Zitat O. Akbari, M. Kamal, A. Afzali-Kusha, M. Pedram, Dual-quality 4:2 compressors for utilizing in dynamic accuracy configurable multipliers. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 25(4), 1352–1361 (2017)CrossRef O. Akbari, M. Kamal, A. Afzali-Kusha, M. Pedram, Dual-quality 4:2 compressors for utilizing in dynamic accuracy configurable multipliers. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 25(4), 1352–1361 (2017)CrossRef
3.
Zurück zum Zitat I. Alouani, H. Ahangari, O. Ozturk, S. Niar, A novel heterogeneous approximate multiplier for low power and high performance. IEEE Embed. Syst. Lett. 10(2), 45–48 (2018)CrossRef I. Alouani, H. Ahangari, O. Ozturk, S. Niar, A novel heterogeneous approximate multiplier for low power and high performance. IEEE Embed. Syst. Lett. 10(2), 45–48 (2018)CrossRef
4.
Zurück zum Zitat M.S. Ansari, H. Jiang, B.F. Cockburn, J. Han, Low-power approximate multipliers using encoded partial products and approximate compressors. IEEE J. Emerg. Select. Top. Circuits Syst. 8, 404–416 (2018)ADSCrossRef M.S. Ansari, H. Jiang, B.F. Cockburn, J. Han, Low-power approximate multipliers using encoded partial products and approximate compressors. IEEE J. Emerg. Select. Top. Circuits Syst. 8, 404–416 (2018)ADSCrossRef
5.
Zurück zum Zitat V.J. Arulkarthick, A. Rathinaswamy, Delay and area efficient approximate multiplier using reverse carry propagate full adder. Microprocess. Microsyst. 74, 103009 (2020)CrossRef V.J. Arulkarthick, A. Rathinaswamy, Delay and area efficient approximate multiplier using reverse carry propagate full adder. Microprocess. Microsyst. 74, 103009 (2020)CrossRef
6.
Zurück zum Zitat T. Ayhan, M. Altun, Circuit aware approximate system design with case studies in image processing and neural networks. IEEE Access 7, 4726–4734 (2019)CrossRef T. Ayhan, M. Altun, Circuit aware approximate system design with case studies in image processing and neural networks. IEEE Access 7, 4726–4734 (2019)CrossRef
7.
Zurück zum Zitat M. Ha, S. Lee, Multipliers with approximate 4–2 compressors and error recovery modules. IEEE Embed. Syst. Lett. 10(1), 6–9 (2018)CrossRef M. Ha, S. Lee, Multipliers with approximate 4–2 compressors and error recovery modules. IEEE Embed. Syst. Lett. 10(1), 6–9 (2018)CrossRef
8.
Zurück zum Zitat U.A. Kumar, S.K. Chatterjee, S.E. Ahmed, Low-power compressor-based approximate multipliers with error correcting module. IEEE Embed. Syst. Lett. 14(2), 59–62 (2022)CrossRef U.A. Kumar, S.K. Chatterjee, S.E. Ahmed, Low-power compressor-based approximate multipliers with error correcting module. IEEE Embed. Syst. Lett. 14(2), 59–62 (2022)CrossRef
9.
Zurück zum Zitat W. Liu, T. Cao, P. Yin, Y. Zhu, C. Wang, E.E. Swartzlander, F. Lombardi, Design and analysis of approximate redundant binary multipliers. IEEE Trans. Comput. 68(6), 804–819 (2019)MathSciNetCrossRef W. Liu, T. Cao, P. Yin, Y. Zhu, C. Wang, E.E. Swartzlander, F. Lombardi, Design and analysis of approximate redundant binary multipliers. IEEE Trans. Comput. 68(6), 804–819 (2019)MathSciNetCrossRef
10.
Zurück zum Zitat W. Liu, T. Zhang, E. McLarnon, M. O’Neill, P. Montuschi, F. Lombardi, Design and analysis of majority logic based approximate adders and multipliers. IEEE Trans. Emerg. Top. Comput. 9(3), 1609–1624 (2019)CrossRef W. Liu, T. Zhang, E. McLarnon, M. O’Neill, P. Montuschi, F. Lombardi, Design and analysis of majority logic based approximate adders and multipliers. IEEE Trans. Emerg. Top. Comput. 9(3), 1609–1624 (2019)CrossRef
11.
Zurück zum Zitat W. Liu, J. Xu, D. Wang, C. Wang, P. Montuschi, F. Lombardi, Design and evaluation of approximate logarithmic multipliers for low power error-tolerant applications. IEEE Trans. Circuits Syst. I Regul. Pap. 65(9), 2856–2868 (2018)CrossRef W. Liu, J. Xu, D. Wang, C. Wang, P. Montuschi, F. Lombardi, Design and evaluation of approximate logarithmic multipliers for low power error-tolerant applications. IEEE Trans. Circuits Syst. I Regul. Pap. 65(9), 2856–2868 (2018)CrossRef
12.
Zurück zum Zitat C. Liu, J. Han, F. Lombardi, A low-power, high-performance approximate multiplier with configurable partial error recovery. In Proc. Design, Automat. Test Eur. Conf. Exhib. (DATE), Dresden, Germany, pp. 1–4 (2014) C. Liu, J. Han, F. Lombardi, A low-power, high-performance approximate multiplier with configurable partial error recovery. In Proc. Design, Automat. Test Eur. Conf. Exhib. (DATE), Dresden, Germany, pp. 1–4 (2014)
13.
Zurück zum Zitat U. Lotrič, R. Pilipović, P. Bulić, A hybrid radix-4 and approximate logarithmic multiplier for energy efficient image processing. Electronics 10(10), 1175 (2021)CrossRef U. Lotrič, R. Pilipović, P. Bulić, A hybrid radix-4 and approximate logarithmic multiplier for energy efficient image processing. Electronics 10(10), 1175 (2021)CrossRef
14.
Zurück zum Zitat Y. Mannepalli, V. B. Korede, and M. Rao, Novel approximate multiplier designs for edge detection application. In Proceedings of the 2021 on Great Lakes Symposium on VLSI (GLSVLSI ’21), New York, USA, pp. 371–377 (2021) Y. Mannepalli, V. B. Korede, and M. Rao, Novel approximate multiplier designs for edge detection application. In Proceedings of the 2021 on Great Lakes Symposium on VLSI (GLSVLSI ’21), New York, USA, pp. 371–377 (2021)
15.
Zurück zum Zitat R. Marimuthu, Y.E. Rezinold, P.S. Mallick, Design and analysis of multiplier using approximate 15-4 compressor. IEEE Access 5, 1027–1036 (2017)CrossRef R. Marimuthu, Y.E. Rezinold, P.S. Mallick, Design and analysis of multiplier using approximate 15-4 compressor. IEEE Access 5, 1027–1036 (2017)CrossRef
16.
Zurück zum Zitat A. Momeni, J. Han, P. Montuschi, F. Lombardi, Design and analysis of approximate compressors for multiplication. IEEE Trans. Comput. 64(4), 984–994 (2015)MathSciNetCrossRef A. Momeni, J. Han, P. Montuschi, F. Lombardi, Design and analysis of approximate compressors for multiplication. IEEE Trans. Comput. 64(4), 984–994 (2015)MathSciNetCrossRef
17.
Zurück zum Zitat R. Pilipović, P. Bulić, On the design of logarithmic multiplier using radix-4 booth encoding. IEEE Access 8, 64578–64590 (2020)CrossRef R. Pilipović, P. Bulić, On the design of logarithmic multiplier using radix-4 booth encoding. IEEE Access 8, 64578–64590 (2020)CrossRef
18.
Zurück zum Zitat K.M. Reddy, M.H. Vasantha, Y.B.N. Kumar, D. Dwivedi, Design and analysis of multiplier using approximate 4-2 compressor. AEU Int. J. Electron. Commun. 107, 89–97 (2019)CrossRef K.M. Reddy, M.H. Vasantha, Y.B.N. Kumar, D. Dwivedi, Design and analysis of multiplier using approximate 4-2 compressor. AEU Int. J. Electron. Commun. 107, 89–97 (2019)CrossRef
19.
Zurück zum Zitat F. Sabetzadeh, M.H. Moaiyeri, M. Ahmadinejad, A majority-based imprecise multiplier for ultra-efficient approximate image multiplication. IEEE Trans. Circuits Syst. I Regul. Pap. 66(11), 4200–4208 (2019)CrossRef F. Sabetzadeh, M.H. Moaiyeri, M. Ahmadinejad, A majority-based imprecise multiplier for ultra-efficient approximate image multiplication. IEEE Trans. Circuits Syst. I Regul. Pap. 66(11), 4200–4208 (2019)CrossRef
20.
Zurück zum Zitat F. Sabetzadeh, M.H. Moaiyeri, M. Ahmadinejad, An ultra-efficient approximate multiplier with error compensation for error-resilient applications. IEEE Trans. Circuits Syst. II Express Briefs 70(2), 776–780 (2023) F. Sabetzadeh, M.H. Moaiyeri, M. Ahmadinejad, An ultra-efficient approximate multiplier with error compensation for error-resilient applications. IEEE Trans. Circuits Syst. II Express Briefs 70(2), 776–780 (2023)
21.
Zurück zum Zitat A.G.M. Strollo, E. Napoli, D. De Caro, N. Petra, G.D. Meo, Comparison and extension of approximate 4-2 compressors for low-power approximate multipliers. IEEE Trans. Circuits Syst. I Regul. Pap. 67(9), 3021–3034 (2020)MathSciNetCrossRef A.G.M. Strollo, E. Napoli, D. De Caro, N. Petra, G.D. Meo, Comparison and extension of approximate 4-2 compressors for low-power approximate multipliers. IEEE Trans. Circuits Syst. I Regul. Pap. 67(9), 3021–3034 (2020)MathSciNetCrossRef
22.
Zurück zum Zitat A.G.M. Strollo, E. Napoli, D.D. Caro, N. Petra, G. Saggese, G.D. Meo, Approximate multipliers using static segmentation: error analysis and improvements. IEEE Trans. Circuits Syst. I Regul. Pap. 69(6), 2449–2462 (2022)CrossRef A.G.M. Strollo, E. Napoli, D.D. Caro, N. Petra, G. Saggese, G.D. Meo, Approximate multipliers using static segmentation: error analysis and improvements. IEEE Trans. Circuits Syst. I Regul. Pap. 69(6), 2449–2462 (2022)CrossRef
23.
Zurück zum Zitat G. Thakur, H. Sohal, S. Jain, Design and comparative performance analysis of various multiplier circuit. J. Sci. Eng. Res. 5(7), 340–349 (2018) G. Thakur, H. Sohal, S. Jain, Design and comparative performance analysis of various multiplier circuit. J. Sci. Eng. Res. 5(7), 340–349 (2018)
24.
Zurück zum Zitat G. Thakur, H. Sohal, S. Jain, An efficient design of 8-bit high speed parallel prefix adder. Res. J. Sci. Technol. 10(2), 105–114 (2018)CrossRef G. Thakur, H. Sohal, S. Jain, An efficient design of 8-bit high speed parallel prefix adder. Res. J. Sci. Technol. 10(2), 105–114 (2018)CrossRef
25.
Zurück zum Zitat G. Thakur, H. Sohal, S. Jain, High speed RADIX-2 butterfly structure using novel Wallace multiplier. Int. J. Eng. Technol. 7(34), 213–217 (2018)CrossRef G. Thakur, H. Sohal, S. Jain, High speed RADIX-2 butterfly structure using novel Wallace multiplier. Int. J. Eng. Technol. 7(34), 213–217 (2018)CrossRef
26.
Zurück zum Zitat G. Thakur, H. Sohal, S. Jain, FPGA-based parallel prefix speculative adder for fast computation application. In 2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC), Waknaghat, India, pp 206–210 (2020) G. Thakur, H. Sohal, S. Jain, FPGA-based parallel prefix speculative adder for fast computation application. In 2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC), Waknaghat, India, pp 206–210 (2020)
27.
Zurück zum Zitat G. Thakur, H. Sohal, S. Jain, Design and analysis of high-speed parallel prefix adder for digital circuit design applications. In 2020 International Conference on Computational Performance Evaluation (ComPE), Shillong, India pp. 095–100 (2020) G. Thakur, H. Sohal, S. Jain, Design and analysis of high-speed parallel prefix adder for digital circuit design applications. In 2020 International Conference on Computational Performance Evaluation (ComPE), Shillong, India pp. 095–100 (2020)
28.
Zurück zum Zitat G. Thakur, H. Sohal, S. Jain, A novel parallel prefix adder for optimized Radix-2 FFT processor. Multidimension. Syst. Signal Process. 32, 1041–1063 (2021)CrossRef G. Thakur, H. Sohal, S. Jain, A novel parallel prefix adder for optimized Radix-2 FFT processor. Multidimension. Syst. Signal Process. 32, 1041–1063 (2021)CrossRef
29.
Zurück zum Zitat G. Thakur, H. Sohal, S. Jain, A novel ASIC-based variable latency speculative parallel prefix adder for image processing application. Circuits Syst. Signal Process. 40(11), 5682–5704 (2021)CrossRef G. Thakur, H. Sohal, S. Jain, A novel ASIC-based variable latency speculative parallel prefix adder for image processing application. Circuits Syst. Signal Process. 40(11), 5682–5704 (2021)CrossRef
30.
Zurück zum Zitat N.V. Toan, J. Lee, FPGA-based multi-level approximate multipliers for high-performance error-resilient applications. IEEE Access 8, 25481–25497 (2020)CrossRef N.V. Toan, J. Lee, FPGA-based multi-level approximate multipliers for high-performance error-resilient applications. IEEE Access 8, 25481–25497 (2020)CrossRef
31.
Zurück zum Zitat S. Vahdat, M. Kamal, A. Afzali-Kusha, M. Pedram, TOSAM: an energy-efficient truncation- and rounding-based scalable approximate multiplier. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 27(5), 1161–1173 (2019)CrossRef S. Vahdat, M. Kamal, A. Afzali-Kusha, M. Pedram, TOSAM: an energy-efficient truncation- and rounding-based scalable approximate multiplier. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 27(5), 1161–1173 (2019)CrossRef
32.
Zurück zum Zitat S. Venkatachalam, S. Ko, Design of power and area efficient approximate multipliers. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 25(5), 1782–1786 (2017)CrossRef S. Venkatachalam, S. Ko, Design of power and area efficient approximate multipliers. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 25(5), 1782–1786 (2017)CrossRef
33.
Zurück zum Zitat Z. Yang, J. Han, F. Lombardi, Approximate compressors for error-resilient multiplier design. In 2015 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS) pp. 183–186 (2015) Z. Yang, J. Han, F. Lombardi, Approximate compressors for error-resilient multiplier design. In 2015 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS) pp. 183–186 (2015)
34.
Zurück zum Zitat T. Yang, T. Ukezono, T. Sato Low-Power and High-Speed Approximate Multiplier Design with a Tree Compressor. In 2017 IEEE International Conference on Computer Design (ICCD), pp 89–96 (2017) T. Yang, T. Ukezono, T. Sato Low-Power and High-Speed Approximate Multiplier Design with a Tree Compressor. In 2017 IEEE International Conference on Computer Design (ICCD), pp 89–96 (2017)
35.
Zurück zum Zitat N. Zacharias, V. Lalu, Study of Approximate Multiplier with Different Adders. In 2020 International Conference on Smart Electronics and Communication (ICOSEC), pp 1264–1267 (2020) N. Zacharias, V. Lalu, Study of Approximate Multiplier with Different Adders. In 2020 International Conference on Smart Electronics and Communication (ICOSEC), pp 1264–1267 (2020)
36.
Zurück zum Zitat R. Zendegani, M. Kamal, M. Bahadori, A. Afzali-Kusha, M. Pedram, RoBA multiplier: a rounding-based approximate multiplier for high-speed yet energy-efficient digital signal processing. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 25(2), 393–401 (2017)CrossRef R. Zendegani, M. Kamal, M. Bahadori, A. Afzali-Kusha, M. Pedram, RoBA multiplier: a rounding-based approximate multiplier for high-speed yet energy-efficient digital signal processing. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 25(2), 393–401 (2017)CrossRef
Metadaten
Titel
Power–Area-Optimized Approximate Multiplier Design for Image Fusion
verfasst von
Garima Thakur
Harsh Sohal
Shruti Jain
Publikationsdatum
19.12.2023
Verlag
Springer US
Erschienen in
Circuits, Systems, and Signal Processing / Ausgabe 4/2024
Print ISSN: 0278-081X
Elektronische ISSN: 1531-5878
DOI
https://doi.org/10.1007/s00034-023-02559-0