Skip to main content

2022 | OriginalPaper | Buchkapitel

2. Power-to-X for Renewable-Based Hybrid Energy Systems

verfasst von : Sahar Davoudi, Amirhosein Khalili-Garakani, Kazem Kashefi

Erschienen in: Whole Energy Systems

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The development of renewable energy infrastructure and technologies is accelerating. One of the main concerns in renewable electricity production is the emergence of generation intermittency and fluctuation along with existing load variability. Power-to-X could play a critical role in providing many technological methods to handle power supplies with the consistency and reliability of future energy systems. A comprehensive investigation of the various power-to-X technologies is provided in this chapter, which could be utilized to integrate the benefits of renewable energies whereas avoiding the limitations when used alone. As well, the latest advances in PtX technologies are investigated and discussed in detail since limitations must be overcome to implement infrastructures around the world.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Van de Krol, R., & Grätzel, M. (2012). Photoelectrochemical hydrogen production. Springer.CrossRef Van de Krol, R., & Grätzel, M. (2012). Photoelectrochemical hydrogen production. Springer.CrossRef
2.
Zurück zum Zitat Khalilpour, K. R. (2019). Interconnected electricity and natural gas supply chains: The roles of power to gas and gas to power. In Polygeneration with Polystorage for chemical and energy hubs (pp. 133–155). Elsevier.CrossRef Khalilpour, K. R. (2019). Interconnected electricity and natural gas supply chains: The roles of power to gas and gas to power. In Polygeneration with Polystorage for chemical and energy hubs (pp. 133–155). Elsevier.CrossRef
3.
Zurück zum Zitat Koj, J. C., Wulf, C., & Zapp, P. (2019). Environmental impacts of power-to-X systems-a review of technological and methodological choices in life cycle assessments. Renewable and Sustainable Energy Reviews, 112, 865–879.CrossRef Koj, J. C., Wulf, C., & Zapp, P. (2019). Environmental impacts of power-to-X systems-a review of technological and methodological choices in life cycle assessments. Renewable and Sustainable Energy Reviews, 112, 865–879.CrossRef
4.
Zurück zum Zitat Fuss, S., et al. (2014). Betting on negative emissions. Nature Climate Change, 4(10), 850–853.CrossRef Fuss, S., et al. (2014). Betting on negative emissions. Nature Climate Change, 4(10), 850–853.CrossRef
5.
Zurück zum Zitat Pleßmann, G., Erdmann, M., Hlusiak, M., & Breyer, C. (2014). Global energy storage demand for a 100% renewable electricity supply. Energy Procedia, 46(0), 22–31.CrossRef Pleßmann, G., Erdmann, M., Hlusiak, M., & Breyer, C. (2014). Global energy storage demand for a 100% renewable electricity supply. Energy Procedia, 46(0), 22–31.CrossRef
6.
Zurück zum Zitat Bosman, A., & Van Daal, H. (1970). Small-polaron versus band conduction in some transition-metal oxides. Advances in Physics, 19(77), 1–117.CrossRef Bosman, A., & Van Daal, H. (1970). Small-polaron versus band conduction in some transition-metal oxides. Advances in Physics, 19(77), 1–117.CrossRef
7.
Zurück zum Zitat de Rego Vasconcelos, B., & Lavoie, J.-M. (2019). Recent advances in power-to-X technology for the production of fuels and chemicals. Frontiers in Chemistry, 7, 392.CrossRef de Rego Vasconcelos, B., & Lavoie, J.-M. (2019). Recent advances in power-to-X technology for the production of fuels and chemicals. Frontiers in Chemistry, 7, 392.CrossRef
8.
Zurück zum Zitat Buffo, G., Ferrero, D., Santarelli, M., & Lanzini, A. (2019). Reversible solid oxide cell (ReSOC) as flexible polygeneration plant integrated with CO2 capture and reuse. E3S Web of Conferences, 113, 02009. EDP Sciences.CrossRef Buffo, G., Ferrero, D., Santarelli, M., & Lanzini, A. (2019). Reversible solid oxide cell (ReSOC) as flexible polygeneration plant integrated with CO2 capture and reuse. E3S Web of Conferences, 113, 02009. EDP Sciences.CrossRef
9.
Zurück zum Zitat Bailera, M., Lisbona, P., Romeo, L. M., & Espatolero, S. (2017). Power to gas projects review: Lab, pilot and demo plants for storing renewable energy and CO2. Renewable and Sustainable Energy Reviews, 69, 292–312.CrossRef Bailera, M., Lisbona, P., Romeo, L. M., & Espatolero, S. (2017). Power to gas projects review: Lab, pilot and demo plants for storing renewable energy and CO2. Renewable and Sustainable Energy Reviews, 69, 292–312.CrossRef
10.
Zurück zum Zitat Schnuelle, C., Thoeming, J., Wassermann, T., Thier, P., von Gleich, A., & Goessling-Reisemann, S. (2019). Socio-technical-economic assessment of power-to-X: Potentials and limitations for an integration into the German energy system. Energy Research & Social Science, 51, 187–197.CrossRef Schnuelle, C., Thoeming, J., Wassermann, T., Thier, P., von Gleich, A., & Goessling-Reisemann, S. (2019). Socio-technical-economic assessment of power-to-X: Potentials and limitations for an integration into the German energy system. Energy Research & Social Science, 51, 187–197.CrossRef
11.
Zurück zum Zitat Storage, E. E. (2011). International Electrotechnical Commission (IEC). White Paper, Geneva, Switzerland. Storage, E. E. (2011). International Electrotechnical Commission (IEC). White Paper, Geneva, Switzerland.
12.
Zurück zum Zitat Daiyan, R., MacGill, I., & Amal, R. (2020). Opportunities and challenges for renewable power-to-X. ACS Publications.CrossRef Daiyan, R., MacGill, I., & Amal, R. (2020). Opportunities and challenges for renewable power-to-X. ACS Publications.CrossRef
13.
Zurück zum Zitat Buffo, G., Marocco, P., Ferrero, D., Lanzini, A., & Santarelli, M. (2019). Power-to-X and power-to-power routes. In Solar hydrogen production (pp. 529–557). Elsevier.CrossRef Buffo, G., Marocco, P., Ferrero, D., Lanzini, A., & Santarelli, M. (2019). Power-to-X and power-to-power routes. In Solar hydrogen production (pp. 529–557). Elsevier.CrossRef
14.
Zurück zum Zitat Vázquez, F. V., et al. (2018). Power-to-X technology using renewable electricity and carbon dioxide from ambient air: SOLETAIR proof-of-concept and improved process concept. Journal of CO2 Utilization, 28, 235–246.CrossRef Vázquez, F. V., et al. (2018). Power-to-X technology using renewable electricity and carbon dioxide from ambient air: SOLETAIR proof-of-concept and improved process concept. Journal of CO2 Utilization, 28, 235–246.CrossRef
15.
Zurück zum Zitat Gür, T. M. (2018). Review of electrical energy storage technologies, materials and systems: Challenges and prospects for large-scale grid storage. Energy & Environmental Science, 11(10), 2696–2767.CrossRef Gür, T. M. (2018). Review of electrical energy storage technologies, materials and systems: Challenges and prospects for large-scale grid storage. Energy & Environmental Science, 11(10), 2696–2767.CrossRef
16.
Zurück zum Zitat Buttler, A., & Spliethoff, H. (2018). Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review. Renewable and Sustainable Energy Reviews, 82, 2440–2454.CrossRef Buttler, A., & Spliethoff, H. (2018). Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review. Renewable and Sustainable Energy Reviews, 82, 2440–2454.CrossRef
17.
Zurück zum Zitat Sternberg, A., & Bardow, A. (2015). Power-to-what?–environmental assessment of energy storage systems. Energy & Environmental Science, 8(2), 389–400.CrossRef Sternberg, A., & Bardow, A. (2015). Power-to-what?–environmental assessment of energy storage systems. Energy & Environmental Science, 8(2), 389–400.CrossRef
18.
Zurück zum Zitat Naims, H. (2016). Economics of carbon dioxide capture and utilization—A supply and demand perspective. Environmental Science and Pollution Research, 23(22), 22226–22241.CrossRef Naims, H. (2016). Economics of carbon dioxide capture and utilization—A supply and demand perspective. Environmental Science and Pollution Research, 23(22), 22226–22241.CrossRef
19.
Zurück zum Zitat Wulf, C., Linssen, J., & Zapp, P. (2018). Power-to-gas—Concepts, demonstration, and prospects. In Hydrogen supply chains (pp. 309–345). Elsevier.CrossRef Wulf, C., Linssen, J., & Zapp, P. (2018). Power-to-gas—Concepts, demonstration, and prospects. In Hydrogen supply chains (pp. 309–345). Elsevier.CrossRef
20.
Zurück zum Zitat Lewandowska-Bernat, A., & Desideri, U. (2017). Opportunities of power-to-gas technology. Energy Procedia, 105, 4569–4574.CrossRef Lewandowska-Bernat, A., & Desideri, U. (2017). Opportunities of power-to-gas technology. Energy Procedia, 105, 4569–4574.CrossRef
21.
Zurück zum Zitat Kumar, S. S., & Himabindu, V. (2019). Hydrogen production by PEM water electrolysis–a review. Materials Science for Energy Technologies, 2(3), 442–454.CrossRef Kumar, S. S., & Himabindu, V. (2019). Hydrogen production by PEM water electrolysis–a review. Materials Science for Energy Technologies, 2(3), 442–454.CrossRef
22.
Zurück zum Zitat Rajeshwar, K., McConnell, R., & Licht, S. (2008). Solar hydrogen generation. Springer.CrossRef Rajeshwar, K., McConnell, R., & Licht, S. (2008). Solar hydrogen generation. Springer.CrossRef
23.
Zurück zum Zitat Chi, J., & Yu, H. (2018). Water electrolysis based on renewable energy for hydrogen production. Chinese Journal of Catalysis, 39(3), 390–394.CrossRef Chi, J., & Yu, H. (2018). Water electrolysis based on renewable energy for hydrogen production. Chinese Journal of Catalysis, 39(3), 390–394.CrossRef
24.
Zurück zum Zitat Acar, C., & Dincer, I. (2014). Comparative assessment of hydrogen production methods from renewable and non-renewable sources. International Journal of Hydrogen Energy, 39(1), 1–12.CrossRef Acar, C., & Dincer, I. (2014). Comparative assessment of hydrogen production methods from renewable and non-renewable sources. International Journal of Hydrogen Energy, 39(1), 1–12.CrossRef
25.
Zurück zum Zitat Lee, B., et al. (2018). Economic feasibility studies of high pressure PEM water electrolysis for distributed H2 refueling stations. Energy Conversion and Management, 162, 139–144.CrossRef Lee, B., et al. (2018). Economic feasibility studies of high pressure PEM water electrolysis for distributed H2 refueling stations. Energy Conversion and Management, 162, 139–144.CrossRef
26.
Zurück zum Zitat Borgschulte, A. (2016). The hydrogen grand challenge. Frontiers in Energy Research, 4, 11.CrossRef Borgschulte, A. (2016). The hydrogen grand challenge. Frontiers in Energy Research, 4, 11.CrossRef
27.
Zurück zum Zitat Ferreira-Aparicio, P., Benito, M., & Sanz, J. (2005). New trends in reforming technologies: From hydrogen industrial plants to multifuel microreformers. Catalysis Reviews, 47(4), 491–588.CrossRef Ferreira-Aparicio, P., Benito, M., & Sanz, J. (2005). New trends in reforming technologies: From hydrogen industrial plants to multifuel microreformers. Catalysis Reviews, 47(4), 491–588.CrossRef
28.
Zurück zum Zitat Carmo, M., Fritz, D. L., Mergel, J., & Stolten, D. (2013). A comprehensive review on PEM water electrolysis. International Journal of Hydrogen Energy, 38(12), 4901–4934.CrossRef Carmo, M., Fritz, D. L., Mergel, J., & Stolten, D. (2013). A comprehensive review on PEM water electrolysis. International Journal of Hydrogen Energy, 38(12), 4901–4934.CrossRef
29.
Zurück zum Zitat Rashid, M. M., Al Mesfer, M. K., Naseem, H., & Danish, M. (2015). Hydrogen production by water electrolysis: A review of alkaline water electrolysis, PEM water electrolysis and high temperature water electrolysis. International Journal of Engineering and Advanced Technology, 4(3), 2249–8958. Rashid, M. M., Al Mesfer, M. K., Naseem, H., & Danish, M. (2015). Hydrogen production by water electrolysis: A review of alkaline water electrolysis, PEM water electrolysis and high temperature water electrolysis. International Journal of Engineering and Advanced Technology, 4(3), 2249–8958.
30.
Zurück zum Zitat Damyanova, S., Pawelec, B., Arishtirova, K., & Fierro, J. (2012). Ni-based catalysts for reforming of methane with CO2. International Journal of Hydrogen Energy, 37(21), 15966–15975.CrossRef Damyanova, S., Pawelec, B., Arishtirova, K., & Fierro, J. (2012). Ni-based catalysts for reforming of methane with CO2. International Journal of Hydrogen Energy, 37(21), 15966–15975.CrossRef
31.
Zurück zum Zitat Iida, S., & Sakata, K. (2019). Hydrogen technologies and developments in Japan. Clean Energy, 3(2), 105–113.CrossRef Iida, S., & Sakata, K. (2019). Hydrogen technologies and developments in Japan. Clean Energy, 3(2), 105–113.CrossRef
32.
Zurück zum Zitat Bruce, S., et al. (2018). National hydrogen roadmap. CSIRO. Bruce, S., et al. (2018). National hydrogen roadmap. CSIRO.
33.
Zurück zum Zitat FCH, J. (2019). Hydrogen roadmap Europe: A sustainable pathway for the European energy transition. Bietlot. FCH, J. (2019). Hydrogen roadmap Europe: A sustainable pathway for the European energy transition. Bietlot.
34.
Zurück zum Zitat Baccioli, A., et al. (2020). Cost effective power-to-X plant using carbon dioxide from a geothermal plant to increase renewable energy penetration. Energy Conversion and Management, 226, 113494.CrossRef Baccioli, A., et al. (2020). Cost effective power-to-X plant using carbon dioxide from a geothermal plant to increase renewable energy penetration. Energy Conversion and Management, 226, 113494.CrossRef
35.
Zurück zum Zitat Lehner, M., Tichler, R., Steinmüller, H., & Koppe, M. (2014). Power-to-gas: Technology and business models. Springer. Lehner, M., Tichler, R., Steinmüller, H., & Koppe, M. (2014). Power-to-gas: Technology and business models. Springer.
36.
Zurück zum Zitat Dhabi, A. (2017). Geothermal power: Technology brief. IRENA. Dhabi, A. (2017). Geothermal power: Technology brief. IRENA.
37.
Zurück zum Zitat Tractebel, H. (2017). Study of early business cases for H2 in energy Storage and more broadly power to H2 applications. In Fuel Cells and Hydrogen Joint Undertaking (FCH JU): Brussels, Belgium. Tractebel, H. (2017). Study of early business cases for H2 in energy Storage and more broadly power to H2 applications. In Fuel Cells and Hydrogen Joint Undertaking (FCH JU): Brussels, Belgium.
38.
Zurück zum Zitat Dresp, S. R., Dionigi, F., Klingenhof, M., & Strasser, P. (2019). Direct electrolytic splitting of seawater: Opportunities and challenges. ACS Energy Letters, 4(4), 933–942.CrossRef Dresp, S. R., Dionigi, F., Klingenhof, M., & Strasser, P. (2019). Direct electrolytic splitting of seawater: Opportunities and challenges. ACS Energy Letters, 4(4), 933–942.CrossRef
39.
Zurück zum Zitat Paudel, S., Kang, Y., Yoo, Y.-S., & Seo, G. T. (2015). Hydrogen production in the anaerobic treatment of domestic-grade synthetic wastewater. Sustainability, 7(12), 16260–16272.CrossRef Paudel, S., Kang, Y., Yoo, Y.-S., & Seo, G. T. (2015). Hydrogen production in the anaerobic treatment of domestic-grade synthetic wastewater. Sustainability, 7(12), 16260–16272.CrossRef
40.
Zurück zum Zitat Leaver, J. D., Gillingham, K. T., & Leaver, L. H. (2009). Assessment of primary impacts of a hydrogen economy in New Zealand using UniSyD. International Journal of Hydrogen Energy, 34(7), 2855–2865.CrossRef Leaver, J. D., Gillingham, K. T., & Leaver, L. H. (2009). Assessment of primary impacts of a hydrogen economy in New Zealand using UniSyD. International Journal of Hydrogen Energy, 34(7), 2855–2865.CrossRef
41.
Zurück zum Zitat Balat, M. (2008). Potential importance of hydrogen as a future solution to environmental and transportation problems. International Journal of Hydrogen Energy, 33(15), 4013–4029.CrossRef Balat, M. (2008). Potential importance of hydrogen as a future solution to environmental and transportation problems. International Journal of Hydrogen Energy, 33(15), 4013–4029.CrossRef
42.
Zurück zum Zitat Cipriani, G., et al. (2014). Perspective on hydrogen energy carrier and its automotive applications. International Journal of Hydrogen Energy, 39(16), 8482–8494.CrossRef Cipriani, G., et al. (2014). Perspective on hydrogen energy carrier and its automotive applications. International Journal of Hydrogen Energy, 39(16), 8482–8494.CrossRef
43.
Zurück zum Zitat Hermesmann, M., Grübel, K., Scherotzki, L., & Müller, T. Promising pathways: The geographic and energetic potential of power-to-x technologies based on regeneratively obtained hydrogen. Renewable and Sustainable Energy Reviews, 138, 110644. Hermesmann, M., Grübel, K., Scherotzki, L., & Müller, T. Promising pathways: The geographic and energetic potential of power-to-x technologies based on regeneratively obtained hydrogen. Renewable and Sustainable Energy Reviews, 138, 110644.
44.
Zurück zum Zitat Reich, G., & Reppich, M. (2013). Regenerative Energietechnik. Springer.CrossRef Reich, G., & Reppich, M. (2013). Regenerative Energietechnik. Springer.CrossRef
45.
Zurück zum Zitat Ursua, A., Gandia, L. M., & Sanchis, P. (2011). Hydrogen production from water electrolysis: Current status and future trends. Proceedings of the IEEE, 100(2), 410–426.CrossRef Ursua, A., Gandia, L. M., & Sanchis, P. (2011). Hydrogen production from water electrolysis: Current status and future trends. Proceedings of the IEEE, 100(2), 410–426.CrossRef
46.
Zurück zum Zitat Holladay, J. D., Hu, J., King, D. L., & Wang, Y. (2009). An overview of hydrogen production technologies. Catalysis Today, 139(4), 244–260.CrossRef Holladay, J. D., Hu, J., King, D. L., & Wang, Y. (2009). An overview of hydrogen production technologies. Catalysis Today, 139(4), 244–260.CrossRef
47.
Zurück zum Zitat Yan, X. L., & Hino, R. (2016). Nuclear hydrogen production handbook. CRC press.CrossRef Yan, X. L., & Hino, R. (2016). Nuclear hydrogen production handbook. CRC press.CrossRef
49.
Zurück zum Zitat Götz, M., et al. (2016). Renewable power-to-gas: A technological and economic review. Renewable Energy, 85, 1371–1390.CrossRef Götz, M., et al. (2016). Renewable power-to-gas: A technological and economic review. Renewable Energy, 85, 1371–1390.CrossRef
50.
Zurück zum Zitat Steinmüller, H., Tichler, R., & Reiter, G. (2014). Power-to-gas–eine Systemanalyse. In Markt-und Technologiescouting und–analyse. Energieinstitut an der Johannes Kepler Universität Linz, TU Wien, MU Leoben, JKU Linz. Steinmüller, H., Tichler, R., & Reiter, G. (2014). Power-to-gas–eine Systemanalyse. In Markt-und Technologiescouting und–analyse. Energieinstitut an der Johannes Kepler Universität Linz, TU Wien, MU Leoben, JKU Linz.
51.
Zurück zum Zitat Shiva Kumar, S., Ramakrishna, S., Srinivasulu Reddy, D., Bhagawan, D., & Himabindu, V. (2017). Synthesis of polysulfone and zirconium oxide coated asbestos composite separators for alkaline water electrolysis. Journal of Chemical Engineering & Process Technology, 3(1035), 1–1035. Shiva Kumar, S., Ramakrishna, S., Srinivasulu Reddy, D., Bhagawan, D., & Himabindu, V. (2017). Synthesis of polysulfone and zirconium oxide coated asbestos composite separators for alkaline water electrolysis. Journal of Chemical Engineering & Process Technology, 3(1035), 1–1035.
52.
Zurück zum Zitat Zeng, K., & Zhang, D. (2010). Recent progress in alkaline water electrolysis for hydrogen production and applications. Progress in Energy and Combustion Science, 36(3), 307–326.CrossRef Zeng, K., & Zhang, D. (2010). Recent progress in alkaline water electrolysis for hydrogen production and applications. Progress in Energy and Combustion Science, 36(3), 307–326.CrossRef
53.
Zurück zum Zitat Schmidt, O., Gambhir, A., Staffell, I., Hawkes, A., Nelson, J., & Few, S. (2017). Future cost and performance of water electrolysis: An expert elicitation study. International Journal of Hydrogen Energy, 42(52), 30470–30492.CrossRef Schmidt, O., Gambhir, A., Staffell, I., Hawkes, A., Nelson, J., & Few, S. (2017). Future cost and performance of water electrolysis: An expert elicitation study. International Journal of Hydrogen Energy, 42(52), 30470–30492.CrossRef
54.
Zurück zum Zitat Coutanceau, C., Baranton, S., & Audichon, T. (2018). Hydrogen production from water electrolysis. Hydrogen Electrochemical Production, 17–62. Coutanceau, C., Baranton, S., & Audichon, T. (2018). Hydrogen production from water electrolysis. Hydrogen Electrochemical Production, 17–62.
55.
Zurück zum Zitat Russell, J., Nuttall, L., & Fickett, A. (1973). Hydrogen generation by solid polymer electrolyte water electrolysis. American Chemical Society and Division of Fuel Chemistry Preprints, 18, 24–40. Russell, J., Nuttall, L., & Fickett, A. (1973). Hydrogen generation by solid polymer electrolyte water electrolysis. American Chemical Society and Division of Fuel Chemistry Preprints, 18, 24–40.
56.
Zurück zum Zitat Martinson, C. A., Van Schoor, G., Uren, K., & Bessarabov, D. (2014). Characterisation of a PEM electrolyser using the current interrupt method. International Journal of Hydrogen Energy, 39(36), 20865–20878.CrossRef Martinson, C. A., Van Schoor, G., Uren, K., & Bessarabov, D. (2014). Characterisation of a PEM electrolyser using the current interrupt method. International Journal of Hydrogen Energy, 39(36), 20865–20878.CrossRef
57.
Zurück zum Zitat Grigor’ev, S., Khaliullin, M., Kuleshov, N., & Fateev, V. (2001). Electrolysis of water in a system with a solid polymer electrolyte at elevated pressure. Russian Journal of Electrochemistry, 37(8), 819–822.CrossRef Grigor’ev, S., Khaliullin, M., Kuleshov, N., & Fateev, V. (2001). Electrolysis of water in a system with a solid polymer electrolyte at elevated pressure. Russian Journal of Electrochemistry, 37(8), 819–822.CrossRef
58.
Zurück zum Zitat Millet, P., Ngameni, R., Grigoriev, S., & Fateev, V. (2011). Scientific and engineering issues related to PEM technology: Water electrolysers, fuel cells and unitized regenerative systems. International Journal of Hydrogen Energy, 36(6), 4156–4163.CrossRef Millet, P., Ngameni, R., Grigoriev, S., & Fateev, V. (2011). Scientific and engineering issues related to PEM technology: Water electrolysers, fuel cells and unitized regenerative systems. International Journal of Hydrogen Energy, 36(6), 4156–4163.CrossRef
59.
Zurück zum Zitat Giovanni, C. D., et al. (2016). Low-cost nanostructured iron sulfide electrocatalysts for PEM water electrolysis. ACS Catalysis, 6(4), 2626–2631.CrossRef Giovanni, C. D., et al. (2016). Low-cost nanostructured iron sulfide electrocatalysts for PEM water electrolysis. ACS Catalysis, 6(4), 2626–2631.CrossRef
60.
Zurück zum Zitat Datta, M. K., et al. (2013). High performance robust F-doped tin oxide based oxygen evolution electro-catalysts for PEM based water electrolysis. Journal of Materials Chemistry A, 1(12), 4026–4037.CrossRef Datta, M. K., et al. (2013). High performance robust F-doped tin oxide based oxygen evolution electro-catalysts for PEM based water electrolysis. Journal of Materials Chemistry A, 1(12), 4026–4037.CrossRef
61.
Zurück zum Zitat Brisse, A., Schefold, J., & Zahid, M. (2008). High temperature water electrolysis in solid oxide cells. International Journal of Hydrogen Energy, 33(20), 5375–5382.CrossRef Brisse, A., Schefold, J., & Zahid, M. (2008). High temperature water electrolysis in solid oxide cells. International Journal of Hydrogen Energy, 33(20), 5375–5382.CrossRef
62.
Zurück zum Zitat Huynh, H. L., & Yu, Z. (2020). CO2 Methanation on Hydrotalcite-derived catalysts and structured reactors: A review. Energy Technology, 8(5), 1901475.CrossRef Huynh, H. L., & Yu, Z. (2020). CO2 Methanation on Hydrotalcite-derived catalysts and structured reactors: A review. Energy Technology, 8(5), 1901475.CrossRef
63.
Zurück zum Zitat De Saint Jean, M., Baurens, P., Bouallou, C., & Couturier, K. (2015). Economic assessment of a power-to-substitute-natural-gas process including high-temperature steam electrolysis. International Journal of Hydrogen Energy, 40(20), 6487–6500.CrossRef De Saint Jean, M., Baurens, P., Bouallou, C., & Couturier, K. (2015). Economic assessment of a power-to-substitute-natural-gas process including high-temperature steam electrolysis. International Journal of Hydrogen Energy, 40(20), 6487–6500.CrossRef
64.
Zurück zum Zitat Manthiram, K., Beberwyck, B. J., & Alivisatos, A. P. (2014). Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst. Journal of the American Chemical Society, 136(38), 13319–13325.CrossRef Manthiram, K., Beberwyck, B. J., & Alivisatos, A. P. (2014). Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst. Journal of the American Chemical Society, 136(38), 13319–13325.CrossRef
65.
Zurück zum Zitat Thema, M., Bauer, F., & Sterner, M. (2019). Power-to-gas: Electrolysis and methanation status review. Renewable and Sustainable Energy Reviews, 112, 775–787.CrossRef Thema, M., Bauer, F., & Sterner, M. (2019). Power-to-gas: Electrolysis and methanation status review. Renewable and Sustainable Energy Reviews, 112, 775–787.CrossRef
66.
Zurück zum Zitat Lewandowska-Bernat, A., & Desideri, U. (2018). Opportunities of power-to-gas technology in different energy systems architectures. Applied Energy, 228, 57–67.CrossRef Lewandowska-Bernat, A., & Desideri, U. (2018). Opportunities of power-to-gas technology in different energy systems architectures. Applied Energy, 228, 57–67.CrossRef
67.
Zurück zum Zitat Machado, A. S. R., Nunes, A. V., & da Ponte, M. N. (2018). Carbon dioxide utilization—Electrochemical reduction to fuels and synthesis of polycarbonates. The Journal of Supercritical Fluids, 134, 150–156.CrossRef Machado, A. S. R., Nunes, A. V., & da Ponte, M. N. (2018). Carbon dioxide utilization—Electrochemical reduction to fuels and synthesis of polycarbonates. The Journal of Supercritical Fluids, 134, 150–156.CrossRef
68.
Zurück zum Zitat Kaneco, S., Katsumata, H., Suzuki, T., & Ohta, K. (2006). Electrochemical reduction of CO2 to methane at the cu electrode in methanol with sodium supporting salts and its comparison with other alkaline salts. Energy & Fuels, 20(1), 409–414.CrossRef Kaneco, S., Katsumata, H., Suzuki, T., & Ohta, K. (2006). Electrochemical reduction of CO2 to methane at the cu electrode in methanol with sodium supporting salts and its comparison with other alkaline salts. Energy & Fuels, 20(1), 409–414.CrossRef
69.
Zurück zum Zitat Taubner, R.-S., Schleper, C., Firneis, M. G., & Rittmann, S. K.-M. (2015). Assessing the ecophysiology of methanogens in the context of recent astrobiological and planetological studies. Life, 5(4), 1652–1686.CrossRef Taubner, R.-S., Schleper, C., Firneis, M. G., & Rittmann, S. K.-M. (2015). Assessing the ecophysiology of methanogens in the context of recent astrobiological and planetological studies. Life, 5(4), 1652–1686.CrossRef
70.
Zurück zum Zitat Rittmann, S., Seifert, A., & Herwig, C. (2015). Essential prerequisites for successful bioprocess development of biological CH4 production from CO2 and H2. Critical Reviews in Biotechnology, 35(2), 141–151.CrossRef Rittmann, S., Seifert, A., & Herwig, C. (2015). Essential prerequisites for successful bioprocess development of biological CH4 production from CO2 and H2. Critical Reviews in Biotechnology, 35(2), 141–151.CrossRef
71.
Zurück zum Zitat Van Dael, M., et al. (2018). Techno-economic assessment of a microbial power-to-gas plant–case study in Belgium. Applied Energy, 215, 416–425.CrossRef Van Dael, M., et al. (2018). Techno-economic assessment of a microbial power-to-gas plant–case study in Belgium. Applied Energy, 215, 416–425.CrossRef
72.
Zurück zum Zitat Lecker, B., Illi, L., Lemmer, A., & Oechsner, H. (2017). Biological hydrogen methanation–a review. Bioresource Technology, 245, 1220–1228.CrossRef Lecker, B., Illi, L., Lemmer, A., & Oechsner, H. (2017). Biological hydrogen methanation–a review. Bioresource Technology, 245, 1220–1228.CrossRef
73.
Zurück zum Zitat Seifert, A., Rittmann, S., Bernacchi, S., & Herwig, C. (2013). Method for assessing the impact of emission gasses on physiology and productivity in biological methanogenesis. Bioresource Technology, 136, 747–751.CrossRef Seifert, A., Rittmann, S., Bernacchi, S., & Herwig, C. (2013). Method for assessing the impact of emission gasses on physiology and productivity in biological methanogenesis. Bioresource Technology, 136, 747–751.CrossRef
74.
Zurück zum Zitat Voelklein, M., Rusmanis, D., & Murphy, J. (2019). Biological methanation: Strategies for in-situ and ex-situ upgrading in anaerobic digestion. Applied Energy, 235, 1061–1071.CrossRef Voelklein, M., Rusmanis, D., & Murphy, J. (2019). Biological methanation: Strategies for in-situ and ex-situ upgrading in anaerobic digestion. Applied Energy, 235, 1061–1071.CrossRef
75.
Zurück zum Zitat Schmidt, P., Batteiger, V., Roth, A., Weindorf, W., & Raksha, T. (2018). Power-to-liquids as renewable fuel option for aviation: A review. Chemie Ingenieur Technik, 90(1–2), 127–140.CrossRef Schmidt, P., Batteiger, V., Roth, A., Weindorf, W., & Raksha, T. (2018). Power-to-liquids as renewable fuel option for aviation: A review. Chemie Ingenieur Technik, 90(1–2), 127–140.CrossRef
76.
Zurück zum Zitat Kasten, P., Blanck, R., Loreck, C., & Hacker, F. (2013). Strombasierte Kraftstoffe im Vergleich-Stand heute und die Langfristperspektive. Öko-Institut Working Paper, 1, 2013. Kasten, P., Blanck, R., Loreck, C., & Hacker, F. (2013). Strombasierte Kraftstoffe im Vergleich-Stand heute und die Langfristperspektive. Öko-Institut Working Paper, 1, 2013.
77.
Zurück zum Zitat Kaiser, P., Pöhlmann, F., & Jess, A. (2014). Intrinsic and effective kinetics of cobalt-catalyzed Fischer-Tropsch synthesis in view of a power-to-liquid process based on renewable energy. Chemical Engineering & Technology, 37(6), 964–972.CrossRef Kaiser, P., Pöhlmann, F., & Jess, A. (2014). Intrinsic and effective kinetics of cobalt-catalyzed Fischer-Tropsch synthesis in view of a power-to-liquid process based on renewable energy. Chemical Engineering & Technology, 37(6), 964–972.CrossRef
78.
Zurück zum Zitat Schmidt, P., Weindorf, W., Roth, A., Batteiger, V., & Riegel, F. (2016). Power-to-liquids: Potentials and perspectives for the future supply of renewable aviation fuel. German Environment Agency. Schmidt, P., Weindorf, W., Roth, A., Batteiger, V., & Riegel, F. (2016). Power-to-liquids: Potentials and perspectives for the future supply of renewable aviation fuel. German Environment Agency.
79.
Zurück zum Zitat Panzone, C., Philippe, R., Chappaz, A., Fongarland, P., & Bengaouer, A. (2020). Power-to-liquid catalytic CO2 valorization into fuels and chemicals: Focus on the Fischer-Tropsch route. Journal of CO2 Utilization, 38, 314–347.CrossRef Panzone, C., Philippe, R., Chappaz, A., Fongarland, P., & Bengaouer, A. (2020). Power-to-liquid catalytic CO2 valorization into fuels and chemicals: Focus on the Fischer-Tropsch route. Journal of CO2 Utilization, 38, 314–347.CrossRef
80.
Zurück zum Zitat Hank, C., et al. (2018). Economics & carbon dioxide avoidance cost of methanol production based on renewable hydrogen and recycled carbon dioxide–power-to-methanol. Sustainable Energy & Fuels, 2(6), 1244–1261.CrossRef Hank, C., et al. (2018). Economics & carbon dioxide avoidance cost of methanol production based on renewable hydrogen and recycled carbon dioxide–power-to-methanol. Sustainable Energy & Fuels, 2(6), 1244–1261.CrossRef
81.
Zurück zum Zitat Bellotti, D., Rivarolo, M., Magistri, L., & Massardo, A. (2017). Feasibility study of methanol production plant from hydrogen and captured carbon dioxide. Journal of CO2 Utilization, 21, 132–138.CrossRef Bellotti, D., Rivarolo, M., Magistri, L., & Massardo, A. (2017). Feasibility study of methanol production plant from hydrogen and captured carbon dioxide. Journal of CO2 Utilization, 21, 132–138.CrossRef
82.
Zurück zum Zitat Ikäheimo, J., Kiviluoma, J., Weiss, R., & Holttinen, H. (2018). Power-to-ammonia in future north European 100% renewable power and heat system. International Journal of Hydrogen Energy, 43(36), 17295–17308.CrossRef Ikäheimo, J., Kiviluoma, J., Weiss, R., & Holttinen, H. (2018). Power-to-ammonia in future north European 100% renewable power and heat system. International Journal of Hydrogen Energy, 43(36), 17295–17308.CrossRef
Metadaten
Titel
Power-to-X for Renewable-Based Hybrid Energy Systems
verfasst von
Sahar Davoudi
Amirhosein Khalili-Garakani
Kazem Kashefi
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-87653-1_2