Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

06.05.2017 | Original Article | Sonderheft 1/2019

Neural Computing and Applications 1/2019

Powered Gaussian kernel spectral clustering

Zeitschrift:
Neural Computing and Applications > Sonderheft 1/2019
Autoren:
Yessica Nataliani, Miin-Shen Yang

Abstract

Spectral clustering is a useful tool for clustering data. It separates data points into different clusters using eigenvectors corresponding to eigenvalues of the similarity matrix from a data set. There are various types of similarity functions to be used for spectral clustering. In this paper, we propose a powered Gaussian kernel function for spectral clustering. We first consider a Gaussian kernel similarity function with a power parameter, and then use a modified correlation comparison algorithm to estimate the power parameter. This parameter can be used for separating points that actually lie on different clusters, but with small distance. We then use the maximum value among all minimum distances between data points to get better clustering results. Using the estimated power parameter and the maximum value among minimum distances is able to improve spectral clustering. Some numerical data, real data sets, and images are used for making comparisons between the powered Gaussian kernel spectral clustering algorithm and some existing methods. The comparison results show the superiority and effectiveness of the proposed method.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Sonderheft 1/2019

Neural Computing and Applications 1/2019 Zur Ausgabe

S.I. : Machine Learning Applications for Self-Organized Wireless Networks

Parallel and incremental credit card fraud detection model to handle concept drift and data imbalance

S.I. : Machine Learning Applications for Self-Organized Wireless Networks

An efficient top-k ranking method for service selection based on ε-ADMOPSO algorithm

Premium Partner

    Bildnachweise