Skip to main content
Erschienen in:

2025 | OriginalPaper | Buchkapitel

PR-Rank: A Parameter Regression Approach for Learning-to-Rank Model Adaptation Without Target Domain Data

verfasst von : Takumi Ito, Atsuki Maruta, Makoto P. Kato, Sumio Fujita

Erschienen in: Web Information Systems Engineering – WISE 2024

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper addresses a problem of constructing a Learning-to-Rank (LtR) model tailored to a target domain without using any domain-specific queries and relevance judgements. Our proposed method, PR-Rank, incorporates domain features, which are represented in a real-valued vector and can be estimated by domain experts, for adapting LtR models. The key component in our method is a parameter regression model that learns to regress the optimal parameters of the LtR model from the domain features. This eliminates the need for access to users’ queries and relevance judgements in a target domain, which is often unavailable in new and emerging services. In our experiments, we compared the performance of the proposed method against a domain-agnostic method, using publicly available LtR datasets including OHSUMED, MQ2007/2008, TREC Web track, and MSLR. The results showed that our method could outperform the baseline model trained on a large amount of data without considering domain differences.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bennett, P.N., Svore, K., Dumais, S.T.: Classification-enhanced ranking. In: WWW, pp. 111–120 (2010) Bennett, P.N., Svore, K., Dumais, S.T.: Classification-enhanced ranking. In: WWW, pp. 111–120 (2010)
2.
Zurück zum Zitat Chen, D., Xiong, Y., Yan, J., Xue, G.R., Wang, G., Chen, Z.: Knowledge transfer for cross domain learning to rank. Inf. Retrieval 13(3), 236–253 (2010) Chen, D., Xiong, Y., Yan, J., Xue, G.R., Wang, G., Chen, Z.: Knowledge transfer for cross domain learning to rank. Inf. Retrieval 13(3), 236–253 (2010)
3.
Zurück zum Zitat Dato, D., MacAvaney, S., Nardini, F.M., Perego, R., Tonellotto, N.: The istella22 dataset: Bridging traditional and neural learning to rank evaluation. In: SIGIR, pp. 3099–3107 (2022) Dato, D., MacAvaney, S., Nardini, F.M., Perego, R., Tonellotto, N.: The istella22 dataset: Bridging traditional and neural learning to rank evaluation. In: SIGIR, pp. 3099–3107 (2022)
4.
Zurück zum Zitat Gao, J., et al.: Model adaptation via model interpolation and boosting for web search ranking. In: EMNLP, pp. 505–513 (2009) Gao, J., et al.: Model adaptation via model interpolation and boosting for web search ranking. In: EMNLP, pp. 505–513 (2009)
5.
Zurück zum Zitat Gao, W., Cai, P., Wong, K.F., Zhou, A.: Learning to rank only using training data from related domain. In: SIGIR, pp. 162–169 (2010) Gao, W., Cai, P., Wong, K.F., Zhou, A.: Learning to rank only using training data from related domain. In: SIGIR, pp. 162–169 (2010)
6.
Zurück zum Zitat Geng, X., Liu, T.Y., Qin, T., Arnold, A., Li, H., Shum, H.Y.: Query dependent ranking using k-nearest neighbor. In: SIGIR, pp. 115–122 (2008) Geng, X., Liu, T.Y., Qin, T., Arnold, A., Li, H., Shum, H.Y.: Query dependent ranking using k-nearest neighbor. In: SIGIR, pp. 115–122 (2008)
7.
Zurück zum Zitat Ghanbari, E., Shakery, A.: Query-dependent learning to rank for cross-lingual information retrieval. Knowl. Inf. Syst. 59(3), 711–743 (2019)CrossRef Ghanbari, E., Shakery, A.: Query-dependent learning to rank for cross-lingual information retrieval. Knowl. Inf. Syst. 59(3), 711–743 (2019)CrossRef
8.
Zurück zum Zitat Goswami, P., Amini, M.R., Gaussier, E.: Transferring knowledge with source selection to learn IR functions on unlabeled collections. In: CIKM, pp. 2315–2320 (2013) Goswami, P., Amini, M.R., Gaussier, E.: Transferring knowledge with source selection to learn IR functions on unlabeled collections. In: CIKM, pp. 2315–2320 (2013)
9.
Zurück zum Zitat Guo, Q., Chen, W., Wan, H.: AOL4PS: a large-scale data set for personalized search. Data Intell. 3(4), 548–567 (2021)CrossRef Guo, Q., Chen, W., Wan, H.: AOL4PS: a large-scale data set for personalized search. Data Intell. 3(4), 548–567 (2021)CrossRef
10.
Zurück zum Zitat Hashemi, H., Zhuang, Y., Kothur, S.S.R., Prasad, S., Meij, E., Bruce Croft, W.: Dense retrieval adaptation using target domain description. In: ICTIR, pp. 95–104 (2023) Hashemi, H., Zhuang, Y., Kothur, S.S.R., Prasad, S., Meij, E., Bruce Croft, W.: Dense retrieval adaptation using target domain description. In: ICTIR, pp. 95–104 (2023)
11.
Zurück zum Zitat Liu, T.Y., et al.: Learning to rank for information retrieval. Found. Trends® Inf. Retrieval 3(3), 225–331 (2009) Liu, T.Y., et al.: Learning to rank for information retrieval. Found. Trends® Inf. Retrieval 3(3), 225–331 (2009)
12.
Zurück zum Zitat Long, B., Lamkhede, S., Vadrevu, S., Zhang, Y., Tseng, B.: A risk minimization framework for domain adaptation. In: CIKM, pp. 1347–1356 (2009) Long, B., Lamkhede, S., Vadrevu, S., Zhang, Y., Tseng, B.: A risk minimization framework for domain adaptation. In: CIKM, pp. 1347–1356 (2009)
13.
Zurück zum Zitat Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11), 2579–2605 (2008) Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11), 2579–2605 (2008)
14.
Zurück zum Zitat MacAvaney, S., Macdonald, C., Ounis, I.: Reproducing personalised session search over the AOL query log. In: ECIR, pp. 627–640 (2022) MacAvaney, S., Macdonald, C., Ounis, I.: Reproducing personalised session search over the AOL query log. In: ECIR, pp. 627–640 (2022)
15.
Zurück zum Zitat Macdonald, C., Dinçer, B.T., Ounis, I.: Transferring learning to rank models for web search. In: ICTIR, pp. 41–50 (2015) Macdonald, C., Dinçer, B.T., Ounis, I.: Transferring learning to rank models for web search. In: ICTIR, pp. 41–50 (2015)
16.
Zurück zum Zitat MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297 (1967) MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297 (1967)
17.
Zurück zum Zitat Ni, W., Huang, Y., Xie, M.: A query dependent approach to learning to rank for information retrieval. In: WAIM, pp. 262–269 (2008) Ni, W., Huang, Y., Xie, M.: A query dependent approach to learning to rank for information retrieval. In: WAIM, pp. 262–269 (2008)
18.
Zurück zum Zitat Peng, J., Macdonald, C., Ounis, I.: Learning to select a ranking function. In: ECIR, pp. 114–126 (2010) Peng, J., Macdonald, C., Ounis, I.: Learning to select a ranking function. In: ECIR, pp. 114–126 (2010)
20.
Zurück zum Zitat Qin, T., Liu, T.Y., Xu, J., Li, H.: LETOR: a benchmark collection for research on learning to rank for information retrieval. Inf. Retrieval 13(4), 346–374 (2010)CrossRef Qin, T., Liu, T.Y., Xu, J., Li, H.: LETOR: a benchmark collection for research on learning to rank for information retrieval. Inf. Retrieval 13(4), 346–374 (2010)CrossRef
21.
Zurück zum Zitat Robertson, S., Zaragoza, H.: The probabilistic relevance framework: BM25 and beyond. Found. Trends®Inf. Retrieval 3(4), 333–389 (2009) Robertson, S., Zaragoza, H.: The probabilistic relevance framework: BM25 and beyond. Found. Trends®Inf. Retrieval 3(4), 333–389 (2009)
22.
Zurück zum Zitat Senter, R., Smith, E.A.: Automated readability index. AMRL-TR. Aerospace Medical Research Laboratories, pp. 1–11 (1967) Senter, R., Smith, E.A.: Automated readability index. AMRL-TR. Aerospace Medical Research Laboratories, pp. 1–11 (1967)
23.
Zurück zum Zitat Sun, S., et al.: Few-Shot text ranking with meta adapted synthetic weak supervision. In: ACL, pp. 5030–5043 (2020) Sun, S., et al.: Few-Shot text ranking with meta adapted synthetic weak supervision. In: ACL, pp. 5030–5043 (2020)
24.
Zurück zum Zitat Wang, K., Thakur, N., Reimers, N., Gurevych, I.: GPL: generative pseudo labeling for unsupervised domain adaptation of dense retrieval. In: NAACL, pp. 2345–2360 (2022) Wang, K., Thakur, N., Reimers, N., Gurevych, I.: GPL: generative pseudo labeling for unsupervised domain adaptation of dense retrieval. In: NAACL, pp. 2345–2360 (2022)
25.
Zurück zum Zitat Zhu, P., Hauff, C.: Unsupervised domain adaptation for question generation with domain data selection and self-training. In: NAACL, pp. 2388–2401 (2022) Zhu, P., Hauff, C.: Unsupervised domain adaptation for question generation with domain data selection and self-training. In: NAACL, pp. 2388–2401 (2022)
Metadaten
Titel
PR-Rank: A Parameter Regression Approach for Learning-to-Rank Model Adaptation Without Target Domain Data
verfasst von
Takumi Ito
Atsuki Maruta
Makoto P. Kato
Sumio Fujita
Copyright-Jahr
2025
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-96-0573-6_1