Skip to main content
Erschienen in: Experiments in Fluids 4/2019

01.04.2019 | Research Article

Practical concerns of implementing a finite-time Lyapunov exponent analysis with under-resolved data

verfasst von: Matthew P. Rockwood, Thomas Loiselle, Melissa A. Green

Erschienen in: Experiments in Fluids | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Using Lagrangian techniques to find transport barriers in complex, aperiodic flows necessitates a careful consideration of the available dimensional support (3D versus 2D) and temporal resolution of the data to be analyzed, a particular challenge in experimental data acquisition. To illustrate and diagnose the detrimental effects that can manifest in the computed Lagrangian flow maps and Cauchy–Green strain tensor that are calculated as part of most Lagrangian coherent structure analyses, planar finite-time Lyapunov exponent (FTLE) fields are computed from analytically defined, experimentally collected, and numerically simulated velocity fields. The FTLE fields calculated using three-component, three-dimensional velocity information (3D FTLE) are compared with calculations using two-dimensional data considering only the in-plane velocities (2D FTLE), data that are typically gathered during fluid dynamics experiments. In some regions, where the vortex rotation axis is perpendicular to the plane of interest, the 2D FTLE may perform well. However, in regions where the vortex rotation axis has a non-zero component parallel to the plane of interest, whole structures can fail to be captured by the 2D FTLE. A quantitative analysis of the error in the 2D FTLE field as it relates to instantaneous vorticity deviation core angle is conducted using Hill’s spherical vortex and the wake of a bioinspired pitching panel. The effect of decreasing temporal resolution is studied using simulated 3D experiments of a fully turbulent channel flow, where the time resolution of the velocity data is artificially degraded. The resultant 3D FTLE fields progressively worsen with degrading velocity field temporal resolution by the visible elongation of coherent structures in the streamwise direction, indicative of the poorly resolved intermediate velocity fields. This effect can be mitigated with a simple method that invokes Taylor’s frozen eddy hypothesis. Both dimensional support and temporal resolution problems in experimental velocity fields can cause major errors in the resulting FTLE fields. With fundamental understanding about the flow field of interest, such as local vortex orientation or relevant length and time scales, some of the pitfalls may be avoided.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Allshouse MR, Peacock T (2015) Refining finite-time Lyapunov exponent ridges and the challenges of classifying them. Chaos Interdiscip J Nonlinear Sci 25(8):087,410MathSciNetCrossRef Allshouse MR, Peacock T (2015) Refining finite-time Lyapunov exponent ridges and the challenges of classifying them. Chaos Interdiscip J Nonlinear Sci 25(8):087,410MathSciNetCrossRef
Zurück zum Zitat Balasuriya S, Ouellette NT, Rypina II (2018) Generalized Lagrangian coherent structures. Phys D Nonlinear Phenom 372:31–51MathSciNetCrossRef Balasuriya S, Ouellette NT, Rypina II (2018) Generalized Lagrangian coherent structures. Phys D Nonlinear Phenom 372:31–51MathSciNetCrossRef
Zurück zum Zitat Banisch R, Koltai P (2017) Understanding the geometry of transport: diffusion maps for Lagrangian trajectory data unravel coherent sets. Chaos Interdiscip J Nonlinear Sci 27(3):035,804MathSciNetCrossRef Banisch R, Koltai P (2017) Understanding the geometry of transport: diffusion maps for Lagrangian trajectory data unravel coherent sets. Chaos Interdiscip J Nonlinear Sci 27(3):035,804MathSciNetCrossRef
Zurück zum Zitat Beron-Vera F, Olascoaga M, Goni G (2008) Oceanic mesoscale eddies as revealed by Lagrangian coherent structures. Geophys Res Lett 35:L12603CrossRef Beron-Vera F, Olascoaga M, Goni G (2008) Oceanic mesoscale eddies as revealed by Lagrangian coherent structures. Geophys Res Lett 35:L12603CrossRef
Zurück zum Zitat Beron-Vera FJ (2010) Mixing by low- and high-resolution surface geostrophic currents. J Geophys Res Oceans 115(C10):C006006CrossRef Beron-Vera FJ (2010) Mixing by low- and high-resolution surface geostrophic currents. J Geophys Res Oceans 115(C10):C006006CrossRef
Zurück zum Zitat Blazevski D, Haller G (2014) Hyperbolic and elliptic transport barriers in three-dimensional unsteady flows. Phys D Nonlinear Phenom 273:46–62MathSciNetCrossRef Blazevski D, Haller G (2014) Hyperbolic and elliptic transport barriers in three-dimensional unsteady flows. Phys D Nonlinear Phenom 273:46–62MathSciNetCrossRef
Zurück zum Zitat Bose C, Sarkar S (2018) Investigating chaotic wake dynamics past a flapping airfoil and the role of vortex interactions behind the chaotic transition. Phys Fluids 30(4):047,101CrossRef Bose C, Sarkar S (2018) Investigating chaotic wake dynamics past a flapping airfoil and the role of vortex interactions behind the chaotic transition. Phys Fluids 30(4):047,101CrossRef
Zurück zum Zitat Bourgeois J, Sattari P, Martinuzzi R (2012) Coherent vortical and straining structures in the finite wall-mounted square cylinder wake. Int J Heat Fluid Flow 35:130–140 [7th symposium on turbulence and shear flow phenomena (TSFP7)] CrossRef Bourgeois J, Sattari P, Martinuzzi R (2012) Coherent vortical and straining structures in the finite wall-mounted square cylinder wake. Int J Heat Fluid Flow 35:130–140 [7th symposium on turbulence and shear flow phenomena (TSFP7)] CrossRef
Zurück zum Zitat BozorgMagham AE, Ross SD (2015) Atmospheric Lagrangian coherent structures considering unresolved turbulence and forecast uncertainty. Commun Nonlinear Sci Numer Simul 22(1):964–979CrossRef BozorgMagham AE, Ross SD (2015) Atmospheric Lagrangian coherent structures considering unresolved turbulence and forecast uncertainty. Commun Nonlinear Sci Numer Simul 22(1):964–979CrossRef
Zurück zum Zitat Chong MS, Perry AE, Cantwell BJ (1990) A general classification of three-dimensional flow fields. Phys Fluids A 2(5):765–777MathSciNetCrossRef Chong MS, Perry AE, Cantwell BJ (1990) A general classification of three-dimensional flow fields. Phys Fluids A 2(5):765–777MathSciNetCrossRef
Zurück zum Zitat Froyland G, Padberg-Gehle K (2015) A rough-and-ready cluster-based approach for extracting finite-time coherent sets from sparse and incomplete trajectory data. Chaos 25(8):087406MathSciNetCrossRef Froyland G, Padberg-Gehle K (2015) A rough-and-ready cluster-based approach for extracting finite-time coherent sets from sparse and incomplete trajectory data. Chaos 25(8):087406MathSciNetCrossRef
Zurück zum Zitat Froyland G, Santitissadeekorn N, Monahan A (2010) Transport in time-dependent dynamical systems: finite-time coherent sets. Chaos Interdiscip J Nonlinear Sci 20(4):043116MathSciNetCrossRef Froyland G, Santitissadeekorn N, Monahan A (2010) Transport in time-dependent dynamical systems: finite-time coherent sets. Chaos Interdiscip J Nonlinear Sci 20(4):043116MathSciNetCrossRef
Zurück zum Zitat Green MA, Rowley CW, Haller G (2007) Detection of Lagrangian coherent structures in three-dimensional turbulence. J Fluid Mech 572:111–120MathSciNetCrossRef Green MA, Rowley CW, Haller G (2007) Detection of Lagrangian coherent structures in three-dimensional turbulence. J Fluid Mech 572:111–120MathSciNetCrossRef
Zurück zum Zitat Green MA, Rowley CW, Smits AJ (2011) The unsteady three-dimensional wake produced by a trapezoidal pitching panel. J Fluid Mech 685:117–145CrossRef Green MA, Rowley CW, Smits AJ (2011) The unsteady three-dimensional wake produced by a trapezoidal pitching panel. J Fluid Mech 685:117–145CrossRef
Zurück zum Zitat Haller G (2011) A variational theory of hyperbolic Lagrangian coherent structures. Phys D Nonlinear Phenom 240(7):574–598MathSciNetCrossRef Haller G (2011) A variational theory of hyperbolic Lagrangian coherent structures. Phys D Nonlinear Phenom 240(7):574–598MathSciNetCrossRef
Zurück zum Zitat Haller G, Hadjighasem A, Farazmand M, Huhn F (2016) Defining coherent vortices objectively from the vorticity. J Fluid Mech 795:136–173MathSciNetCrossRef Haller G, Hadjighasem A, Farazmand M, Huhn F (2016) Defining coherent vortices objectively from the vorticity. J Fluid Mech 795:136–173MathSciNetCrossRef
Zurück zum Zitat Hernández-Carrasco I, López C, Hernández-García E, Turiel A (2011) How reliable are finite-size Lyapunov exponents for the assessment of ocean dynamics? Ocean Model 36(3–4):208–218CrossRef Hernández-Carrasco I, López C, Hernández-García E, Turiel A (2011) How reliable are finite-size Lyapunov exponents for the assessment of ocean dynamics? Ocean Model 36(3–4):208–218CrossRef
Zurück zum Zitat Hill MJM (1894) On a spherical vortex. Philos Trans R Soc Lond (A) 185:213–245CrossRef Hill MJM (1894) On a spherical vortex. Philos Trans R Soc Lond (A) 185:213–245CrossRef
Zurück zum Zitat Hunt JCR, Wray AA, Moin P (1988) Eddies, stream, and convergence zones in turbulent flows. Center for Turbulence Research Report CTR-S88 Hunt JCR, Wray AA, Moin P (1988) Eddies, stream, and convergence zones in turbulent flows. Center for Turbulence Research Report CTR-S88
Zurück zum Zitat Karrasch D, Haller G (2013) Do finite-size Lyapunov exponents detect coherent structures? Chaos Interdiscip J Nonlinear Sci 23(4):043,126MathSciNetCrossRef Karrasch D, Haller G (2013) Do finite-size Lyapunov exponents detect coherent structures? Chaos Interdiscip J Nonlinear Sci 23(4):043,126MathSciNetCrossRef
Zurück zum Zitat Keating SR, Smith KS, Kramer PR (2011) Diagnosing lateral mixing in the upper ocean with virtual tracers: Spatial and temporal resolution dependence. J Phys Oceanogr 41(8):1512–1534CrossRef Keating SR, Smith KS, Kramer PR (2011) Diagnosing lateral mixing in the upper ocean with virtual tracers: Spatial and temporal resolution dependence. J Phys Oceanogr 41(8):1512–1534CrossRef
Zurück zum Zitat Kim J, Moin P, Moser R (1987) Turbulence statistics in fully developed channel flow at low Reynolds number. J Fluid Mech 177:133–166CrossRef Kim J, Moin P, Moser R (1987) Turbulence statistics in fully developed channel flow at low Reynolds number. J Fluid Mech 177:133–166CrossRef
Zurück zum Zitat King JT, Kumar R, Green MA (2018) Experimental observations of the three-dimensional wake structures and dynamics generated by a rigid, bioinspired pitching panel. Phys Rev Fluids 3(3):034,701CrossRef King JT, Kumar R, Green MA (2018) Experimental observations of the three-dimensional wake structures and dynamics generated by a rigid, bioinspired pitching panel. Phys Rev Fluids 3(3):034,701CrossRef
Zurück zum Zitat Kourentis L, Konstantinidis E (2011) Uncovering large-scale coherent structures in natural and forced turbulent wakes by combining PIV, POD, and FTLE. Exp Fluids 52(3):749–763CrossRef Kourentis L, Konstantinidis E (2011) Uncovering large-scale coherent structures in natural and forced turbulent wakes by combining PIV, POD, and FTLE. Exp Fluids 52(3):749–763CrossRef
Zurück zum Zitat Kumar R, King JT, Green MA (2016) Momentum distribution in the wake of a trapezoidal pitching panel. Mar Technol Soc J 50(5):9–23CrossRef Kumar R, King JT, Green MA (2016) Momentum distribution in the wake of a trapezoidal pitching panel. Mar Technol Soc J 50(5):9–23CrossRef
Zurück zum Zitat Leung S (2011) An Eulerian approach for computing the finite time Lyapunov exponent. J Comput Phys 230(9):3500–3524MathSciNetCrossRef Leung S (2011) An Eulerian approach for computing the finite time Lyapunov exponent. J Comput Phys 230(9):3500–3524MathSciNetCrossRef
Zurück zum Zitat Leung S (2013) The backward phase flow method for the Eulerian finite time Lyapunov exponent computations. Chaos Interdiscip J Nonlinear Sci 23(4):043,132MathSciNetCrossRef Leung S (2013) The backward phase flow method for the Eulerian finite time Lyapunov exponent computations. Chaos Interdiscip J Nonlinear Sci 23(4):043,132MathSciNetCrossRef
Zurück zum Zitat Miron P, Vétel J (2015) Towards the detection of moving separation in unsteady flows. J Fluid Mech 779:819–841MathSciNetCrossRef Miron P, Vétel J (2015) Towards the detection of moving separation in unsteady flows. J Fluid Mech 779:819–841MathSciNetCrossRef
Zurück zum Zitat Mulleners K, Raffel M (2011) The onset of dynamic stall revisited. Exp Fluids 52(3):779–793CrossRef Mulleners K, Raffel M (2011) The onset of dynamic stall revisited. Exp Fluids 52(3):779–793CrossRef
Zurück zum Zitat O’Farrell C, Dabiri JO (2014) Pinch-off of non-axisymmetric vortex rings. J Fluid Mech 740:61–96CrossRef O’Farrell C, Dabiri JO (2014) Pinch-off of non-axisymmetric vortex rings. J Fluid Mech 740:61–96CrossRef
Zurück zum Zitat Olcay AB, Pottebaum TS, Krueger PS (2010) Sensitivity of Lagrangian coherent structure identification to flow field resolution and random errors. Chaos Interdiscip J Nonlinear Sci 20(1):017506MathSciNetCrossRef Olcay AB, Pottebaum TS, Krueger PS (2010) Sensitivity of Lagrangian coherent structure identification to flow field resolution and random errors. Chaos Interdiscip J Nonlinear Sci 20(1):017506MathSciNetCrossRef
Zurück zum Zitat Poje AC, Haza AC, Özgökmen TM, Magaldi MG, Garraffo ZD (2010) Resolution dependent relative dispersion statistics in a hierarchy of ocean models. Ocean Model 31(1–2):36–50CrossRef Poje AC, Haza AC, Özgökmen TM, Magaldi MG, Garraffo ZD (2010) Resolution dependent relative dispersion statistics in a hierarchy of ocean models. Ocean Model 31(1–2):36–50CrossRef
Zurück zum Zitat Rempel EL, Chian ACL, Brandenburg A, Muñoz PR, Shadden SC (2013) Coherent structures and the saturation of a nonlinear dynamo. J Fluid Mech 729:309–329MathSciNetCrossRef Rempel EL, Chian ACL, Brandenburg A, Muñoz PR, Shadden SC (2013) Coherent structures and the saturation of a nonlinear dynamo. J Fluid Mech 729:309–329MathSciNetCrossRef
Zurück zum Zitat Rockwood MP, Taira K, Green MA (2016) Detecting vortex formation and shedding in cylinder wakes using Lagrangian coherent structures. AIAA J 55:15–23CrossRef Rockwood MP, Taira K, Green MA (2016) Detecting vortex formation and shedding in cylinder wakes using Lagrangian coherent structures. AIAA J 55:15–23CrossRef
Zurück zum Zitat Shadden S, Lekien F, Marsden J (2005) Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensinal aperiodic flows. Phys D 212:271–304MathSciNetCrossRef Shadden S, Lekien F, Marsden J (2005) Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensinal aperiodic flows. Phys D 212:271–304MathSciNetCrossRef
Zurück zum Zitat Sulman MHM, Huntley HS, Lipphardt BL Jr, Kirwan AD Jr (2013) Leaving flatland: diagnostics for Lagrangian coherent structures in three-dimensional flows. Phys D Nonlinear Phenom 258:77–92MathSciNetCrossRef Sulman MHM, Huntley HS, Lipphardt BL Jr, Kirwan AD Jr (2013) Leaving flatland: diagnostics for Lagrangian coherent structures in three-dimensional flows. Phys D Nonlinear Phenom 258:77–92MathSciNetCrossRef
Zurück zum Zitat Tang W, Walker P (2012) Finite-time statistics of scalar diffusion in Lagrangian coherent structures. Phys Rev E 86(4):045,201CrossRef Tang W, Walker P (2012) Finite-time statistics of scalar diffusion in Lagrangian coherent structures. Phys Rev E 86(4):045,201CrossRef
Zurück zum Zitat Taylor GI (1938) The spectrum of turbulence. Proc R Soc Lond Ser A Math Phys Sci 164(919):476–490MATH Taylor GI (1938) The spectrum of turbulence. Proc R Soc Lond Ser A Math Phys Sci 164(919):476–490MATH
Zurück zum Zitat You G, Leung S (2018) An improved Eulerian approach for the finite time Lyapunov exponent. J Sci Comput 76(3):1407–1435MathSciNetCrossRef You G, Leung S (2018) An improved Eulerian approach for the finite time Lyapunov exponent. J Sci Comput 76(3):1407–1435MathSciNetCrossRef
Zurück zum Zitat Zhou J, Adrian RJ, Balachandar S, Kendall TM (1999) Mechanisms for generating coherent packets of hairpin vortices in channel flow. J Fluid Mech 387:353–396MathSciNetCrossRef Zhou J, Adrian RJ, Balachandar S, Kendall TM (1999) Mechanisms for generating coherent packets of hairpin vortices in channel flow. J Fluid Mech 387:353–396MathSciNetCrossRef
Metadaten
Titel
Practical concerns of implementing a finite-time Lyapunov exponent analysis with under-resolved data
verfasst von
Matthew P. Rockwood
Thomas Loiselle
Melissa A. Green
Publikationsdatum
01.04.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Experiments in Fluids / Ausgabe 4/2019
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-018-2658-1

Weitere Artikel der Ausgabe 4/2019

Experiments in Fluids 4/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.