Skip to main content
Erschienen in: Quantum Information Processing 4/2019

01.04.2019

Practical covert quantum key distribution with decoy-state method

verfasst von: Fen-Zhuo Guo, Li Liu, An-Kang Wang, Qiao-Yan Wen

Erschienen in: Quantum Information Processing | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Covert communication methods are used in the communication with high security level. When it turns to quantum communication, covertness is also an important concern which is firstly discussed by Arrazola and Scarani (Phys Rev Lett, 117:250503, 2016). To make quantum key distribution (QKD) protocol more suitable in the scenarios need high security, we propose a covert QKD protocol with decoy-state method in this paper. The secure key rate and covertness of the covert decoy-state QKD are proved. We compare the performance of the covert decoy-state QKD with those of the original decoy-state QKD and covert QKD without decoy states in numerical simulations. It shows that (1) the covert decoy-state QKD can have a performance comparable to the original decoy-state QKD protocol besides its covertness; (2) the covert decoy-state QKD can have a considerable improvement of transmission distance over covert QKD without decoy states at the cost of a small change of covertness parameter. Furthermore, the statistical fluctuation due to the finite length of data is also taken into account based on the Gaussian analysis method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: In Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, pp. 175–179 (1984) Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: In Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, pp. 175–179 (1984)
2.
Zurück zum Zitat Simon, M.K., Omura, J.K., Scholtz, R.A., Levitt, B.K.: Spread Spectrum Communications Handbook. McGraw-Hill, New York City (2002) Simon, M.K., Omura, J.K., Scholtz, R.A., Levitt, B.K.: Spread Spectrum Communications Handbook. McGraw-Hill, New York City (2002)
3.
Zurück zum Zitat Fridrich, J.: Steganography in Digital Media: Principles, Algorithms, and Applications. Cambridge University Press, Cambridge (2009)CrossRef Fridrich, J.: Steganography in Digital Media: Principles, Algorithms, and Applications. Cambridge University Press, Cambridge (2009)CrossRef
4.
Zurück zum Zitat Bash, B.A., Guha, S., Goeckel, D., Towsley, D.: Quantum noise limited optical communication with low probability of detection. In: 2013 IEEE International Symposium on Information Theory Proceedings (ISIT), pp. 1715–1719 (2013) Bash, B.A., Guha, S., Goeckel, D., Towsley, D.: Quantum noise limited optical communication with low probability of detection. In: 2013 IEEE International Symposium on Information Theory Proceedings (ISIT), pp. 1715–1719 (2013)
5.
Zurück zum Zitat Che, P.H., Bakshi, M., Jaggi, S.: Reliable deniable communication: hiding messages in noise. In: 2013 IEEE International Symposium on Information Theory Proceedings (ISIT), pp. 2945–2949 (2013) Che, P.H., Bakshi, M., Jaggi, S.: Reliable deniable communication: hiding messages in noise. In: 2013 IEEE International Symposium on Information Theory Proceedings (ISIT), pp. 2945–2949 (2013)
6.
Zurück zum Zitat Bash, B.A., Goeckel, D., Towsley, D.: Limits of reliable communication with low probability of detection on awgn channels. IEEE J. Sel. Areas Commun. 31, 1921 (2013)CrossRef Bash, B.A., Goeckel, D., Towsley, D.: Limits of reliable communication with low probability of detection on awgn channels. IEEE J. Sel. Areas Commun. 31, 1921 (2013)CrossRef
7.
Zurück zum Zitat Bash, B.A., Gheorghe, A.H., Patel, M., Habif, J.L., Goeckel, D., Towsley, D., Guha, S.: Quantum-secure covert communication on bosonic channels. Nat. Commun. 6, 8626 (2015)ADSCrossRef Bash, B.A., Gheorghe, A.H., Patel, M., Habif, J.L., Goeckel, D., Towsley, D., Guha, S.: Quantum-secure covert communication on bosonic channels. Nat. Commun. 6, 8626 (2015)ADSCrossRef
8.
Zurück zum Zitat Arrazola, J.M., Scarani, V.: Covert quantum communication. Phys. Rev. Lett. 117, 250503 (2016)ADSCrossRef Arrazola, J.M., Scarani, V.: Covert quantum communication. Phys. Rev. Lett. 117, 250503 (2016)ADSCrossRef
9.
Zurück zum Zitat Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000)ADSCrossRef Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000)ADSCrossRef
10.
Zurück zum Zitat Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)ADSCrossRef Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)ADSCrossRef
11.
Zurück zum Zitat Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050 (1999)ADSCrossRef Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050 (1999)ADSCrossRef
12.
Zurück zum Zitat Scarani, V., Acin, A., Ribordy, G., Gisin, N.: Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. Phys. Rev. Lett. 92, 057901 (2004)ADSCrossRef Scarani, V., Acin, A., Ribordy, G., Gisin, N.: Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. Phys. Rev. Lett. 92, 057901 (2004)ADSCrossRef
13.
Zurück zum Zitat Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)ADSCrossRef Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)ADSCrossRef
14.
Zurück zum Zitat Lo, H.K., Ma, X.F., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)ADSCrossRef Lo, H.K., Ma, X.F., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)ADSCrossRef
15.
Zurück zum Zitat Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)ADSCrossRef Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)ADSCrossRef
16.
Zurück zum Zitat Lin, S., Wen, Q.Y., Gao, F., Zhu, F.C.: Eavesdropping on secure deterministic communication with qubits through photon-number-splitting attacks. Phys. Rev. A 79, 054303 (2009)ADSCrossRef Lin, S., Wen, Q.Y., Gao, F., Zhu, F.C.: Eavesdropping on secure deterministic communication with qubits through photon-number-splitting attacks. Phys. Rev. A 79, 054303 (2009)ADSCrossRef
17.
Zurück zum Zitat Brassard, G., Lutkenhaus, N., Mor, T., Sanders, B.C.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330 (2000)ADSCrossRef Brassard, G., Lutkenhaus, N., Mor, T., Sanders, B.C.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330 (2000)ADSCrossRef
18.
Zurück zum Zitat Song, T.T., Zhang, J., Qin, S.J., Gao, F., Wen, Q.Y.: Finite-key analysis for quantum key distribution with decoy states. Quantum Inf. Comput. 11, 374–389 (2011)MathSciNetMATH Song, T.T., Zhang, J., Qin, S.J., Gao, F., Wen, Q.Y.: Finite-key analysis for quantum key distribution with decoy states. Quantum Inf. Comput. 11, 374–389 (2011)MathSciNetMATH
19.
Zurück zum Zitat Ma, X., Razavi, M.: Alternative schemes for measurement-device-independent quantum key distribution. Phys. Rev. A 86, 062319 (2012)ADSCrossRef Ma, X., Razavi, M.: Alternative schemes for measurement-device-independent quantum key distribution. Phys. Rev. A 86, 062319 (2012)ADSCrossRef
20.
Zurück zum Zitat Song, T.T., Wen, Q.Y., Guo, F.Z., Tan, X.Q.: Finite-key analysis for measurement-device-independent quantum key distribution. Phys. Rev. A 86, 022332 (2012)ADSCrossRef Song, T.T., Wen, Q.Y., Guo, F.Z., Tan, X.Q.: Finite-key analysis for measurement-device-independent quantum key distribution. Phys. Rev. A 86, 022332 (2012)ADSCrossRef
21.
Zurück zum Zitat Rubenok, A., Slater, J.A., Chan, P., Lucio-Martinez, I., Tittel, W.: Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks. Phys. Rev. Lett. 111, 130501 (2013)ADSCrossRef Rubenok, A., Slater, J.A., Chan, P., Lucio-Martinez, I., Tittel, W.: Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks. Phys. Rev. Lett. 111, 130501 (2013)ADSCrossRef
22.
Zurück zum Zitat Wang, X.B.: Three-intensity decoy-state method for device-independent quantum key distribution with basis-dependent errors. Phys. Rev. A 87, 012320 (2013)ADSCrossRef Wang, X.B.: Three-intensity decoy-state method for device-independent quantum key distribution with basis-dependent errors. Phys. Rev. A 87, 012320 (2013)ADSCrossRef
23.
Zurück zum Zitat Yu, Z.W., Zhou, Y.H., Wang, X.B.: Three-intensity decoy-state method for measurement device independent quantum key distribution. Phys. Rev. A 88, 062339 (2013)ADSCrossRef Yu, Z.W., Zhou, Y.H., Wang, X.B.: Three-intensity decoy-state method for measurement device independent quantum key distribution. Phys. Rev. A 88, 062339 (2013)ADSCrossRef
24.
Zurück zum Zitat Zhou, C., Bao, W.S., Zhang, H.L., Li, H.W., Wang, Y., Li, Y., Wang, X.: Biased decoy-state measurement-device-independent quantum key distribution with finite resources. Phys. Rev. A 91, 022313 (2015)ADSCrossRef Zhou, C., Bao, W.S., Zhang, H.L., Li, H.W., Wang, Y., Li, Y., Wang, X.: Biased decoy-state measurement-device-independent quantum key distribution with finite resources. Phys. Rev. A 91, 022313 (2015)ADSCrossRef
25.
Zurück zum Zitat Zhou, Y.H., Yu, Z.W., Wang, X.B.: Making the decoy-state measurement-device-independent quantum key distribution practically useful. Phys. Rev. A 93, 042324 (2016)ADSCrossRef Zhou, Y.H., Yu, Z.W., Wang, X.B.: Making the decoy-state measurement-device-independent quantum key distribution practically useful. Phys. Rev. A 93, 042324 (2016)ADSCrossRef
26.
Zurück zum Zitat Liu, L., Guo, F.Z., Qin, S.J., Wen, Q.Y.: Round-robin differential-phase-shift quantum key distribution with a passive decoy state method. Sci. Rep. 7, 42261 (2017)ADSCrossRef Liu, L., Guo, F.Z., Qin, S.J., Wen, Q.Y.: Round-robin differential-phase-shift quantum key distribution with a passive decoy state method. Sci. Rep. 7, 42261 (2017)ADSCrossRef
27.
Zurück zum Zitat Liu, L., Guo, F.Z., Wen, Q.Y.: Practical passive decoy state measurement-device-independent quantum key distribution with unstable sources. Sci. Rep. 7, 11370 (2017)ADSCrossRef Liu, L., Guo, F.Z., Wen, Q.Y.: Practical passive decoy state measurement-device-independent quantum key distribution with unstable sources. Sci. Rep. 7, 11370 (2017)ADSCrossRef
28.
Zurück zum Zitat Wang, Y., Bao, W.S., Zhou, C., Jiang, M.S., Li, H.W.: Tight finite-key analysis of a practical decoy-state quantum key distribution with unstable sources. Phys. Rev. A 94, 032335 (2016)ADSCrossRef Wang, Y., Bao, W.S., Zhou, C., Jiang, M.S., Li, H.W.: Tight finite-key analysis of a practical decoy-state quantum key distribution with unstable sources. Phys. Rev. A 94, 032335 (2016)ADSCrossRef
29.
Zurück zum Zitat Sun, S.H., Gao, M., Li, C.Y., Liang, L.M.: Practical decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A 87, 052329 (2013)ADSCrossRef Sun, S.H., Gao, M., Li, C.Y., Liang, L.M.: Practical decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A 87, 052329 (2013)ADSCrossRef
30.
Zurück zum Zitat Xu, F., Xu, H., Lo, H.K.: Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A 89, 052333 (2014)ADSCrossRef Xu, F., Xu, H., Lo, H.K.: Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A 89, 052333 (2014)ADSCrossRef
31.
Zurück zum Zitat Lim, C.C.W., Curty, M., Walenta, N., Xu, F., Zbinden, H.: Concise security bounds for practical decoy-state quantum key distribution. Phys. Rev. A 89, 022307 (2014)ADSCrossRef Lim, C.C.W., Curty, M., Walenta, N., Xu, F., Zbinden, H.: Concise security bounds for practical decoy-state quantum key distribution. Phys. Rev. A 89, 022307 (2014)ADSCrossRef
32.
Zurück zum Zitat Zhang, Z., Zhao, Q., Razavi, M., Ma, X.: Improved key-rate bounds for practical decoy-state quantum-key-distribution systems. Phys. Rev. A 95, 012333 (2017)ADSCrossRef Zhang, Z., Zhao, Q., Razavi, M., Ma, X.: Improved key-rate bounds for practical decoy-state quantum-key-distribution systems. Phys. Rev. A 95, 012333 (2017)ADSCrossRef
33.
Zurück zum Zitat Gottesman, D., Lo, H.K., Lutkenhaus, N., Preskill, J.: Security of quantum key distribution with imperfect devices. Quantum Inf. Comput. 4, 325 (2004)MathSciNetMATH Gottesman, D., Lo, H.K., Lutkenhaus, N., Preskill, J.: Security of quantum key distribution with imperfect devices. Quantum Inf. Comput. 4, 325 (2004)MathSciNetMATH
34.
Zurück zum Zitat Ma, X., Qi, B., Zhao, Y., Lo, H.K.: Practical decoy state for quantum key distribution. Phys. Rev. A 72, 012326 (2005)ADSCrossRef Ma, X., Qi, B., Zhao, Y., Lo, H.K.: Practical decoy state for quantum key distribution. Phys. Rev. A 72, 012326 (2005)ADSCrossRef
35.
Zurück zum Zitat Tomamichel, M., Lim, C.C.W., Gisin, N., Renner, R.: Tight finite-key analysis for quantum cryptography. Nat. Commun. 3, 634 (2012)ADSCrossRef Tomamichel, M., Lim, C.C.W., Gisin, N., Renner, R.: Tight finite-key analysis for quantum cryptography. Nat. Commun. 3, 634 (2012)ADSCrossRef
36.
Zurück zum Zitat Ma, X., Fung, C.H.F., Razavi, M.: Statistical fluctuation analysis for measurement-device-independent quantum key distribution. Phys. Rev. A 86, 052305 (2012)ADSCrossRef Ma, X., Fung, C.H.F., Razavi, M.: Statistical fluctuation analysis for measurement-device-independent quantum key distribution. Phys. Rev. A 86, 052305 (2012)ADSCrossRef
37.
Zurück zum Zitat Cody, W.J.: Algorithm 715: SPECFUNCA portable fortran package of special function routines and test drivers. ACM Trans. Math. Softw. 19, 22 (1993)CrossRef Cody, W.J.: Algorithm 715: SPECFUNCA portable fortran package of special function routines and test drivers. ACM Trans. Math. Softw. 19, 22 (1993)CrossRef
38.
Zurück zum Zitat Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)CrossRef Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)CrossRef
39.
Zurück zum Zitat Gobby, C., Yuan, Z.L., Shields, A.J.: Quantum key distribution over 122 km of standard telecom fiber. Appl. Phys. Lett. 84, 3762 (2004)ADSCrossRef Gobby, C., Yuan, Z.L., Shields, A.J.: Quantum key distribution over 122 km of standard telecom fiber. Appl. Phys. Lett. 84, 3762 (2004)ADSCrossRef
Metadaten
Titel
Practical covert quantum key distribution with decoy-state method
verfasst von
Fen-Zhuo Guo
Li Liu
An-Kang Wang
Qiao-Yan Wen
Publikationsdatum
01.04.2019
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 4/2019
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-019-2181-1

Weitere Artikel der Ausgabe 4/2019

Quantum Information Processing 4/2019 Zur Ausgabe

Neuer Inhalt