Skip to main content
Erschienen in: Quantum Information Processing 11/2020

01.11.2020

Practical decoy-state quantum random number generator with weak coherent sources

verfasst von: Shuo-Shuo Han, Hua-Jian Ding, Chun-Hui Zhang, Xing-Yu Zhou, Chun-Mei Zhang, Qin Wang

Erschienen in: Quantum Information Processing | Ausgabe 11/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Considering imperfect experimental conditions, here we give a practical proposal on the decoy-state quantum random number generator with weak coherent sources. In the proposal, three different intensities of light sources are used to estimate the contribution of single-photon pulses. System randomness is characterized and simulated through the minimum entropy. Numerical simulation results show that our new scheme can extract out randomness close to the asymptotic case where the fraction of single-photon pulses are exactly known. Furthermore, a proof-of-principle experimental demonstration is presented, showing excellent agreement between experiment and theory.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Schneier, B.: Applied Cryptography, 2nd edn. Wiley, New York (1996)MATH Schneier, B.: Applied Cryptography, 2nd edn. Wiley, New York (1996)MATH
2.
3.
Zurück zum Zitat Rarity, J., Owens, P., Tapster, P.: Quantum random-number generation and key sharing. J. Mod. Opt. 41, 2435 (1994)CrossRefADS Rarity, J., Owens, P., Tapster, P.: Quantum random-number generation and key sharing. J. Mod. Opt. 41, 2435 (1994)CrossRefADS
4.
Zurück zum Zitat Stefanov, A., Gisin, N., Guinnard, O., Guinnard, L., Zbinden, H.: Optical quantum random number generator. J. Mod. Opt. 47, 595 (2000)ADS Stefanov, A., Gisin, N., Guinnard, O., Guinnard, L., Zbinden, H.: Optical quantum random number generator. J. Mod. Opt. 47, 595 (2000)ADS
5.
Zurück zum Zitat Jennewein, T., Achleitner, U., Weihs, G., Weinfurter, H., Zeilinger, A.: A fast and compact quantum random number generator. Rev. Sci. Instrum. 71, 1675 (2000)CrossRefADS Jennewein, T., Achleitner, U., Weihs, G., Weinfurter, H., Zeilinger, A.: A fast and compact quantum random number generator. Rev. Sci. Instrum. 71, 1675 (2000)CrossRefADS
6.
Zurück zum Zitat Dynes, J.F., Yuan, Z.L., Sharpe, A.W., Shields, A.J.: A high speed, postprocessing free, quantum random number generator. Appl. Phys. Lett. 93, 031109 (2008)CrossRefADS Dynes, J.F., Yuan, Z.L., Sharpe, A.W., Shields, A.J.: A high speed, postprocessing free, quantum random number generator. Appl. Phys. Lett. 93, 031109 (2008)CrossRefADS
7.
Zurück zum Zitat Wahl, M., Leifgen, M.: An ultrafast quantum random number generator with provably bounded output bias based on photon arrival time measurements. Appl. Phys. Lett. 98, 171105 (2011)CrossRefADS Wahl, M., Leifgen, M.: An ultrafast quantum random number generator with provably bounded output bias based on photon arrival time measurements. Appl. Phys. Lett. 98, 171105 (2011)CrossRefADS
8.
Zurück zum Zitat Nie, Y.Q., Zhang, H.F., Zhang, Z., Wang, J., Ma, X., Zhang, J., Pan, J.W.: Practical and fast quantum random number generation based on photon arrival time relative to external reference. Appl. Phys. Lett. 104, 051110 (2014)CrossRefADS Nie, Y.Q., Zhang, H.F., Zhang, Z., Wang, J., Ma, X., Zhang, J., Pan, J.W.: Practical and fast quantum random number generation based on photon arrival time relative to external reference. Appl. Phys. Lett. 104, 051110 (2014)CrossRefADS
9.
Zurück zum Zitat Rogina, B.M.: Quantum random number generator based on photonic emission in semiconductors. Rev. Sci. Instrum. 78, 045104 (2007)CrossRefADS Rogina, B.M.: Quantum random number generator based on photonic emission in semiconductors. Rev. Sci. Instrum. 78, 045104 (2007)CrossRefADS
10.
Zurück zum Zitat Boweles, J., Quintino, M.T., Brunner, N.: Certifying the dimension of classical and quantum systems in a prepare-and-measure scenario with independent devices. Phys. Rev. Lett. 112, 140407 (2014)CrossRefADS Boweles, J., Quintino, M.T., Brunner, N.: Certifying the dimension of classical and quantum systems in a prepare-and-measure scenario with independent devices. Phys. Rev. Lett. 112, 140407 (2014)CrossRefADS
11.
Zurück zum Zitat Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)CrossRefADS Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)CrossRefADS
12.
Zurück zum Zitat Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)CrossRefADS Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)CrossRefADS
13.
Zurück zum Zitat Lo, H.K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)CrossRefADS Lo, H.K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)CrossRefADS
14.
Zurück zum Zitat Wang, C., Song, X.T., Yin, Z.Q., Wang, S., Chen, W., Zhang, C.M., Guo, G.C., Han, Z.F.: Phasereference-free experiment of measurement-device-independent quantum key distribution. Phys. Rev. Lett. 115, 160502 (2015)CrossRefADS Wang, C., Song, X.T., Yin, Z.Q., Wang, S., Chen, W., Zhang, C.M., Guo, G.C., Han, Z.F.: Phasereference-free experiment of measurement-device-independent quantum key distribution. Phys. Rev. Lett. 115, 160502 (2015)CrossRefADS
15.
Zurück zum Zitat Wang, D., Li, M., Guo, G.C., Wang, Q.: An improved scheme on decoy-state method of measurement device-independent quantum key distribution. Sci. Rep. 5, 15130 (2015)CrossRefADS Wang, D., Li, M., Guo, G.C., Wang, Q.: An improved scheme on decoy-state method of measurement device-independent quantum key distribution. Sci. Rep. 5, 15130 (2015)CrossRefADS
16.
Zurück zum Zitat Lunghi, T., Brask, J.B., Bowles, J.: Self-testing quantum random number generator. Phys. Rev. Lett. 114, 150501 (2015)CrossRefADS Lunghi, T., Brask, J.B., Bowles, J.: Self-testing quantum random number generator. Phys. Rev. Lett. 114, 150501 (2015)CrossRefADS
17.
Zurück zum Zitat Konig, R., Renner, R., Schaffner, C.: The operational meaning of min- and max-entropy. IEEE Trans. Inf. Theory 55, 4337 (2009)MathSciNetCrossRef Konig, R., Renner, R., Schaffner, C.: The operational meaning of min- and max-entropy. IEEE Trans. Inf. Theory 55, 4337 (2009)MathSciNetCrossRef
18.
Zurück zum Zitat Wang, Q., Wang, X.B., Guo, G.C.: Practical decoy-state method in quantum key distribution with a heralded single-photon source. Phys. Rev. A 75, 012312 (2007)CrossRefADS Wang, Q., Wang, X.B., Guo, G.C.: Practical decoy-state method in quantum key distribution with a heralded single-photon source. Phys. Rev. A 75, 012312 (2007)CrossRefADS
19.
Zurück zum Zitat Mao, C.C., Li, J., Zhu, J.R., Zhang, C.M., Wang, Q.: An improved proposal on the practical quantum key distribution with biased basis. Quantum Inf. Process 16, 256 (2017)MathSciNetCrossRefADS Mao, C.C., Li, J., Zhu, J.R., Zhang, C.M., Wang, Q.: An improved proposal on the practical quantum key distribution with biased basis. Quantum Inf. Process 16, 256 (2017)MathSciNetCrossRefADS
20.
Zurück zum Zitat Yu, Z.W., Zhou, Y.H., Wang, X.B.: Statistical fluctuation analysis for measurement-device-independent quantum key distribution with three-intensity decoy-state method. Phys. Rev. A 91, 032318 (2015)CrossRefADS Yu, Z.W., Zhou, Y.H., Wang, X.B.: Statistical fluctuation analysis for measurement-device-independent quantum key distribution with three-intensity decoy-state method. Phys. Rev. A 91, 032318 (2015)CrossRefADS
21.
Zurück zum Zitat Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7 (2014)MathSciNetCrossRef Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7 (2014)MathSciNetCrossRef
22.
Zurück zum Zitat Li, D.D., Gao, S., Li, G.C., Xue, L., Wang, L.W., Lu, C.B.: Field implementation of long-distance quantum key distribution over aerial fiber with fast polarization feedback. Opt. Express 26, 22793 (2018)CrossRefADS Li, D.D., Gao, S., Li, G.C., Xue, L., Wang, L.W., Lu, C.B.: Field implementation of long-distance quantum key distribution over aerial fiber with fast polarization feedback. Opt. Express 26, 22793 (2018)CrossRefADS
23.
Zurück zum Zitat Fei, X.W., Yin, Z.Q., Cui, C.H., Huang, W., Xu, B.J., Wang, S., Chen, W., Han, Y.G., Guo, G.C., Han, Z.F.: Optimality of quantum randomness certification with independent devices. J. Opt. Soc. Am. B 35, 2186 (2018)CrossRefADS Fei, X.W., Yin, Z.Q., Cui, C.H., Huang, W., Xu, B.J., Wang, S., Chen, W., Han, Y.G., Guo, G.C., Han, Z.F.: Optimality of quantum randomness certification with independent devices. J. Opt. Soc. Am. B 35, 2186 (2018)CrossRefADS
24.
Zurück zum Zitat Fei, X.W., Yin, Z.Q., Huang, W., Xu, B.J., Wang, S., Chen, W., Han, Y.G., Guo, G.C., Han, Z.F.: Tighter bound of quantum randomness certification for independent-devices scenario. Sci. Rep. 7(1), 14666 (2017)CrossRefADS Fei, X.W., Yin, Z.Q., Huang, W., Xu, B.J., Wang, S., Chen, W., Han, Y.G., Guo, G.C., Han, Z.F.: Tighter bound of quantum randomness certification for independent-devices scenario. Sci. Rep. 7(1), 14666 (2017)CrossRefADS
25.
Zurück zum Zitat Frohlich, B., Lucamarini, M., Dynes, J.F., Comandar, L.C., Tam, W.W.S., Plews, A., Sharpe, A.W., Yuan, Z.L., Shields, A.J.: Long-distance quantum key distribution secure against coherent attacks”. Optica 4, 163 (2017)CrossRefADS Frohlich, B., Lucamarini, M., Dynes, J.F., Comandar, L.C., Tam, W.W.S., Plews, A., Sharpe, A.W., Yuan, Z.L., Shields, A.J.: Long-distance quantum key distribution secure against coherent attacks”. Optica 4, 163 (2017)CrossRefADS
26.
Zurück zum Zitat Ding, H.J., Liu, J.Y., Zhang, C.H., Wang, Q.: Predicting optimal parameters with random forest for quantum key distribution. Quantum Inf. Process 19, 60 (2020)MathSciNetCrossRefADS Ding, H.J., Liu, J.Y., Zhang, C.H., Wang, Q.: Predicting optimal parameters with random forest for quantum key distribution. Quantum Inf. Process 19, 60 (2020)MathSciNetCrossRefADS
27.
Zurück zum Zitat Ding, H.J., Chen, J.J., Ji, L., Zhou, X.Y., Zhang, C.H., Zhang, C.M., Wang, Q.: 280-km experimental demonstration of a quantum digital signature with one decoy state. Opt. Lett. 45, 1711 (2020)CrossRefADS Ding, H.J., Chen, J.J., Ji, L., Zhou, X.Y., Zhang, C.H., Zhang, C.M., Wang, Q.: 280-km experimental demonstration of a quantum digital signature with one decoy state. Opt. Lett. 45, 1711 (2020)CrossRefADS
28.
Zurück zum Zitat Liu, J.Y., Ding, H.J., Zhang, C.M., Xie, S.P., Wang, Q.: Practical phase-modulation stabilization in quantum key distribution via machine learning. Phys. Rev. Appl. 12, 014059 (2019)CrossRefADS Liu, J.Y., Ding, H.J., Zhang, C.M., Xie, S.P., Wang, Q.: Practical phase-modulation stabilization in quantum key distribution via machine learning. Phys. Rev. Appl. 12, 014059 (2019)CrossRefADS
Metadaten
Titel
Practical decoy-state quantum random number generator with weak coherent sources
verfasst von
Shuo-Shuo Han
Hua-Jian Ding
Chun-Hui Zhang
Xing-Yu Zhou
Chun-Mei Zhang
Qin Wang
Publikationsdatum
01.11.2020
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 11/2020
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-020-02902-3

Weitere Artikel der Ausgabe 11/2020

Quantum Information Processing 11/2020 Zur Ausgabe

Neuer Inhalt