Skip to main content

2018 | OriginalPaper | Buchkapitel

10. Practical Examples

verfasst von : Eduard Hofer

Erschienen in: The Uncertainty Analysis of Model Results

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

First, the application of a population dynamics model is analysed. The evolution of a fish population (anchovy) as well as that of their main natural predators (guano-birds) is simulated over the coming 20 years and for a given management strategy. The uncertainty analysis considers the combined effect of 37 uncertain data. “Harvestable anchovy biomass” and “guano-bird population” are the analysed main results. Their computed uncertainty is presented by statistical tolerance intervals with their lower and upper limit shown as functions over the given time. Three measures of uncertainty importance are computed over this time and are compared. The main uncertainty contributors are identified and presented together with the conclusions drawn from the analysis results.
The second example requires the separation of variability and epistemic uncertainty. A carcinogenic substance was accidentally released many years ago, and it is required to know the percentage of the exposed population with dose value above a given decision threshold. In total, over 3000 uncertain data contribute to the epistemic uncertainty of the computed percentage. The correlation between measured values and measurement errors is estimated, and its state of knowledge is taken into account following the method suggested in Chap. 3. Neglecting this correlation shifts the statistical tolerance intervals for the percentage of individuals with dose above the threshold to higher values. Additionally, the individual dose values and their uncertainty need to be known in order to decide about compensation. Uncertainty importance measures indicate where the state of knowledge needs to be improved.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The choice of possibly true vectors of measurement errors has to satisfy the condition that the variance of the difference between measurement values and possibly true errors must be a possibly true variance of the true values. In particular, it must not be inflated by the variance of the errors.
 
Literatur
Zurück zum Zitat Caulkins, J., Marrett, R., & Yates, A. (1985). Peruvian anchovy population dynamics. COMAP Inc., UMAP Journal, VI(3), 1–23. Caulkins, J., Marrett, R., & Yates, A. (1985). Peruvian anchovy population dynamics. COMAP Inc., UMAP Journal, VI(3), 1–23.
Zurück zum Zitat Hofer, E. (2008). How to account for uncertainty due to measurement errors in an uncertainty analysis using Monte Carlo simulation. Health Physics, 95(3), 277–290.CrossRef Hofer, E. (2008). How to account for uncertainty due to measurement errors in an uncertainty analysis using Monte Carlo simulation. Health Physics, 95(3), 277–290.CrossRef
Zurück zum Zitat Kloos, M. (2015). Main features of the tool SUSA 4.0 for uncertainty and sensitivity analyses. ESREL 2015, European Safety and Reliability Conference, Zurich.CrossRef Kloos, M. (2015). Main features of the tool SUSA 4.0 for uncertainty and sensitivity analyses. ESREL 2015, European Safety and Reliability Conference, Zurich.CrossRef
Zurück zum Zitat Rosner, B. (1995). Fundamentals of Biostatistics (4th ed.). New York: Duxbury Press. Rosner, B. (1995). Fundamentals of Biostatistics (4th ed.). New York: Duxbury Press.
Zurück zum Zitat Schafer, D. W., & Gilbert, E. S. (2006). Some statistical implications of dose uncertainty in radiation dose-response analysis. Radiation Research, 166, 303–312.CrossRef Schafer, D. W., & Gilbert, E. S. (2006). Some statistical implications of dose uncertainty in radiation dose-response analysis. Radiation Research, 166, 303–312.CrossRef
Zurück zum Zitat Simon, S. L., Hoffman, F. O., & Hofer, E. (2015). The two-dimensional Monte Carlo: A new methodologic paradigm for dose reconstruction for epidemiological studies. Radiation Research, 183, 27–41.CrossRef Simon, S. L., Hoffman, F. O., & Hofer, E. (2015). The two-dimensional Monte Carlo: A new methodologic paradigm for dose reconstruction for epidemiological studies. Radiation Research, 183, 27–41.CrossRef
Metadaten
Titel
Practical Examples
verfasst von
Eduard Hofer
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-76297-5_10