Skip to main content

2011 | OriginalPaper | Buchkapitel

12. Practical Use of Hydrogels in Stereolithography for Tissue Engineering Applications

verfasst von : Karina Arcaute, Brenda K. Mann, Ryan B. Wicker

Erschienen in: Stereolithography

Verlag: Springer US

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In recent years, additive manufacturing (AM) or rapid prototyping (RP) technologies, initially developed to create prototypes prior to production for the automotive, aerospace, and other industries, have found applications in tissue engineering (TE) and their use is growing rapidly. RP technologies are increasingly demonstrating the potential for fabricating biocompatible 3D structures with precise control of the micro- and macro-scale characteristics. Several comprehensive reviews on the use of RP technologies, also known as solid freeform fabrication, Additive Manufacturing, direct digital manufacturing, and other names, have been published recently [1–4].

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Leong, K.F., C.M. Cheah, and C.K. Chua. Solid freeform fabrication of three-dimensional scaffolds for engineering replacements tissues and organs. Biomaterials 24: 2363-2378, 2003.CrossRef Leong, K.F., C.M. Cheah, and C.K. Chua. Solid freeform fabrication of three-dimensional scaffolds for engineering replacements tissues and organs. Biomaterials 24: 2363-2378, 2003.CrossRef
2.
Zurück zum Zitat Liu, V. and S.N. Bhatia. Three-dimensional tissue fabrication. Advanced Drug Delivery Reviews 56: 1635–1647, 2004.CrossRef Liu, V. and S.N. Bhatia. Three-dimensional tissue fabrication. Advanced Drug Delivery Reviews 56: 1635–1647, 2004.CrossRef
3.
Zurück zum Zitat Hutmacher, D.W. and M.A. Woodruff. Design, Fabrication, and Characterization of Scaffolds via Solid Free-Form Fabrication Techniques. In: Biomaterials Fabrication and Processing Handbook, edited by P.K. Chu and X. Liu. Boca Raton, FL: CRC Press, Taylor & Francis Group, 2008, pp. 45–67. Hutmacher, D.W. and M.A. Woodruff. Design, Fabrication, and Characterization of Scaffolds via Solid Free-Form Fabrication Techniques. In: Biomaterials Fabrication and Processing Handbook, edited by P.K. Chu and X. Liu. Boca Raton, FL: CRC Press, Taylor & Francis Group, 2008, pp. 45–67.
4.
Zurück zum Zitat Vozzi, G. and A. Ahluwalia. Rapid Prototyping Methods for Tissue Engineering Applications. In: Biomaterials Fabrication and Processing Handbook, edited by P.K. Chu and X. Liu. Boca Raton, FL: CRC Press, Taylor & Francis Group, 2008, pp. 95–114CrossRef Vozzi, G. and A. Ahluwalia. Rapid Prototyping Methods for Tissue Engineering Applications. In: Biomaterials Fabrication and Processing Handbook, edited by P.K. Chu and X. Liu. Boca Raton, FL: CRC Press, Taylor & Francis Group, 2008, pp. 95–114CrossRef
5.
Zurück zum Zitat Ang, T.H., F.S.A. Sultana, D.W. Hutmacher, Y.S. Wong, J.Y.H. Fuh, X.M. Mo, H.T. Loh, and S.H. Teoh. Fabrication of 3D chitosan-hydroxyapatite scaffolds using a robotic dispensing system. Materials Science and Engineering C 20: 35–42, 2002.CrossRef Ang, T.H., F.S.A. Sultana, D.W. Hutmacher, Y.S. Wong, J.Y.H. Fuh, X.M. Mo, H.T. Loh, and S.H. Teoh. Fabrication of 3D chitosan-hydroxyapatite scaffolds using a robotic dispensing system. Materials Science and Engineering C 20: 35–42, 2002.CrossRef
6.
Zurück zum Zitat Landers, R., U. Hubner, R. Schmelzeisen and R. Mulhaupt. Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials 23: 4437–4447, 2002CrossRef Landers, R., U. Hubner, R. Schmelzeisen and R. Mulhaupt. Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials 23: 4437–4447, 2002CrossRef
7.
Zurück zum Zitat Vozzi, G., C. Flaim, A. Ahluwalia, and S. Bhatia. Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition. Biomaterials 24: 2533–2540, 2003.CrossRef Vozzi, G., C. Flaim, A. Ahluwalia, and S. Bhatia. Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition. Biomaterials 24: 2533–2540, 2003.CrossRef
8.
Zurück zum Zitat Vozzi, G., V. Chiono, G. Ciardelli, P. Giusti, A. Previti, C. Cristallini, N. Barbani, G. Tantussi, and A. Ahluwalia. Microfabrication of biodegradable polymeric structures for guided tissue engineering. Materials Research Society Symposium Proceedings, EXS-1: F5.22.1–3, 2004. Vozzi, G., V. Chiono, G. Ciardelli, P. Giusti, A. Previti, C. Cristallini, N. Barbani, G. Tantussi, and A. Ahluwalia. Microfabrication of biodegradable polymeric structures for guided tissue engineering. Materials Research Society Symposium Proceedings, EXS-1: F5.22.1–3, 2004.
9.
Zurück zum Zitat Wiria, F.E., K.F. Leong, and Y. Liu. Poly-ε-caprolactone/hydroxiapatite for tissue engineering scaffold fabrication via selective laser sintering. Acta Biomaterialia 3: 1–12, 2007.CrossRef Wiria, F.E., K.F. Leong, and Y. Liu. Poly-ε-caprolactone/hydroxiapatite for tissue engineering scaffold fabrication via selective laser sintering. Acta Biomaterialia 3: 1–12, 2007.CrossRef
10.
Zurück zum Zitat Tan, K.H., C.K. Chua, K.F. Leong, C.M. Cheah, P. Cheang, M.S. Abu Bakar, and S.W. Cha. Scaffold development using selective laser sintering of polyetherketone-hydroxyapatite biocomposite blends. Biomaterials 24: 3115–3123, 2003.CrossRef Tan, K.H., C.K. Chua, K.F. Leong, C.M. Cheah, P. Cheang, M.S. Abu Bakar, and S.W. Cha. Scaffold development using selective laser sintering of polyetherketone-hydroxyapatite biocomposite blends. Biomaterials 24: 3115–3123, 2003.CrossRef
11.
Zurück zum Zitat Hutmacher, D.W., T. Schantz, I. Zein, K.W. Ng, S.H. Teoh, and K.C. Tan. Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. Journal of Biomedical Materials Research 55(2): 203–216, 2001.CrossRef Hutmacher, D.W., T. Schantz, I. Zein, K.W. Ng, S.H. Teoh, and K.C. Tan. Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. Journal of Biomedical Materials Research 55(2): 203–216, 2001.CrossRef
12.
Zurück zum Zitat Zein, I., D.W. Hutmacher, K.C. Tan, and S.H. Teoh. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23: 1169–1185, 2002.CrossRef Zein, I., D.W. Hutmacher, K.C. Tan, and S.H. Teoh. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23: 1169–1185, 2002.CrossRef
13.
Zurück zum Zitat Chim, H., D.W. Hutmacher, A.M. Chou, A.L. Oliveira, R.L. Reis, T.C. Lim, and J.T. Schantz. A comparative analysis of scaffold material modifications for load-bearing applications in tissue engineering. International Journal of Oral and Maxillofacial Surgery 35: 928–934, 2006.CrossRef Chim, H., D.W. Hutmacher, A.M. Chou, A.L. Oliveira, R.L. Reis, T.C. Lim, and J.T. Schantz. A comparative analysis of scaffold material modifications for load-bearing applications in tissue engineering. International Journal of Oral and Maxillofacial Surgery 35: 928–934, 2006.CrossRef
14.
Zurück zum Zitat Liu, V.A. and S.N. Bhatia. Three-dimensional photopatterning of hydrogels containing living cells. Biomedical Microdevices 4: 257–266, 2002.CrossRef Liu, V.A. and S.N. Bhatia. Three-dimensional photopatterning of hydrogels containing living cells. Biomedical Microdevices 4: 257–266, 2002.CrossRef
15.
Zurück zum Zitat Hahn, M.S., Miller, J.S., and J.L. West. Laser scanning lithography for surface micropatterning on hydrogels. Advanced Materials 17: 2939–2942, 2005.CrossRef Hahn, M.S., Miller, J.S., and J.L. West. Laser scanning lithography for surface micropatterning on hydrogels. Advanced Materials 17: 2939–2942, 2005.CrossRef
16.
Zurück zum Zitat Hahn, M.S. L.J. Taite, J.J. Moon, M.C. Rowland, K.A. Ruffino, and J.L. West. Photolithographic patterning of polyethylene glycol hydrogels. Biomaterials 27: 2519–2534, 2006.CrossRef Hahn, M.S. L.J. Taite, J.J. Moon, M.C. Rowland, K.A. Ruffino, and J.L. West. Photolithographic patterning of polyethylene glycol hydrogels. Biomaterials 27: 2519–2534, 2006.CrossRef
17.
Zurück zum Zitat Hahn, M.S., Miller J.S., and J.L. West. Three-dimensional biochemical and biomechanical patterning of hydrogels for guiding cell behavior. Advanced Materials 18: 2679–2684, 2006.CrossRef Hahn, M.S., Miller J.S., and J.L. West. Three-dimensional biochemical and biomechanical patterning of hydrogels for guiding cell behavior. Advanced Materials 18: 2679–2684, 2006.CrossRef
18.
Zurück zum Zitat Luo, N., A.T. Metters, B. Hutchison, C.N. Bowman, and K.S. Anseth. A methacrylated photoiniferter as a chemical basis for microlithography: micropatterning based on photografting polymerization. Macromolecules 36: 6739–6745, 2003.CrossRef Luo, N., A.T. Metters, B. Hutchison, C.N. Bowman, and K.S. Anseth. A methacrylated photoiniferter as a chemical basis for microlithography: micropatterning based on photografting polymerization. Macromolecules 36: 6739–6745, 2003.CrossRef
19.
Zurück zum Zitat Starly, B., R. Chang, and W. Sun. UV-Photolithography fabrication of poly-ethylene glycol hydrogels encapsulated with hepatocytes. Proceedings of the 17th Annual Solid Freeform Fabrication Symposium, University of Texas at Austin, August 1–3, 2006, pp 102–110. Starly, B., R. Chang, and W. Sun. UV-Photolithography fabrication of poly-ethylene glycol hydrogels encapsulated with hepatocytes. Proceedings of the 17th Annual Solid Freeform Fabrication Symposium, University of Texas at Austin, August 1–3, 2006, pp 102–110.
20.
Zurück zum Zitat Han, L.H., G. Mapili, S. Chen, and K. Roy. Freeform fabrication of biological scaffolds by projection photopolymerization. Proceedings of the 18th Annual Solid Freeform Fabrication Symposium, University of Texas at Austin, August 1–3, 2007, pp 450–457. Han, L.H., G. Mapili, S. Chen, and K. Roy. Freeform fabrication of biological scaffolds by projection photopolymerization. Proceedings of the 18th Annual Solid Freeform Fabrication Symposium, University of Texas at Austin, August 1–3, 2007, pp 450–457.
21.
Zurück zum Zitat Han, L.H., G. Mapili, S. Chen, and K. Roy. Projection Microfabrication of three-dimensional scaffolds for tissue engineering. Transactions of ASME: Journal of Manufacturing Science and Engineering 130: 021005-1–021005-4, 2008. Han, L.H., G. Mapili, S. Chen, and K. Roy. Projection Microfabrication of three-dimensional scaffolds for tissue engineering. Transactions of ASME: Journal of Manufacturing Science and Engineering 130: 021005-1–021005-4, 2008.
22.
Zurück zum Zitat Choi, J.W., R.B. Wicker, S.H. Cho, C.S. Ha, S.H. Lee. Cure depth control for complex 3D microstructure fabrication in dynamic mask projection microstereolithography. Rapid Prototyping Journal 15(1): 59–70, 2009.CrossRef Choi, J.W., R.B. Wicker, S.H. Cho, C.S. Ha, S.H. Lee. Cure depth control for complex 3D microstructure fabrication in dynamic mask projection microstereolithography. Rapid Prototyping Journal 15(1): 59–70, 2009.CrossRef
23.
Zurück zum Zitat Choi, J.W., R.B. Wicker, S.H. Lee, K.H.Choi, C.S. Ha, and I. Chung. Fabrication of 3D biocompatible/biodegradable micro-scaffolds using dynamic mask projection microstereolithography. Journal of Materials Processing Technology, 209(15–16): 5494–5503, 2009. Choi, J.W., R.B. Wicker, S.H. Lee, K.H.Choi, C.S. Ha, and I. Chung. Fabrication of 3D biocompatible/biodegradable micro-scaffolds using dynamic mask projection microstereolithography. Journal of Materials Processing Technology, 209(15–16): 5494–5503, 2009.
24.
Zurück zum Zitat Comeau, B.M., Umar, Y., Gonsalves, K.E., and Henderson, C.L. New materials and methods for hierarchically structured tissue scaffolds. Materials Research Society Symposium Proceedings, 845(A): AA4.4.1–6, 2005. Comeau, B.M., Umar, Y., Gonsalves, K.E., and Henderson, C.L. New materials and methods for hierarchically structured tissue scaffolds. Materials Research Society Symposium Proceedings, 845(A): AA4.4.1–6, 2005.
25.
Zurück zum Zitat Bens, A.T., C. Tille, B. Leukers, G. Bermes, E. Emons, R. Sobe, A. Pansky, B. Roitzheim, M. Schulze, E. Tobiasch, and H. Seitz. Mechanical properties and bioanalytical characterization for a novel non-toxic flexible photopolymer formulation class. Proceedings of the 16th Annual Solid Freeform Fabrication Symposium, University of Texas at Austin, August 1–3, 2005, pp 162–173. Bens, A.T., C. Tille, B. Leukers, G. Bermes, E. Emons, R. Sobe, A. Pansky, B. Roitzheim, M. Schulze, E. Tobiasch, and H. Seitz. Mechanical properties and bioanalytical characterization for a novel non-toxic flexible photopolymer formulation class. Proceedings of the 16th Annual Solid Freeform Fabrication Symposium, University of Texas at Austin, August 1–3, 2005, pp 162–173.
26.
Zurück zum Zitat Cooke, M.N., J.P. Fisher, D. Dean, Rimnac, C. and A.G. Mikos. Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone in growth. Materials Research Part B: Applied Biomaterials 64B: 65–69, 2002.CrossRef Cooke, M.N., J.P. Fisher, D. Dean, Rimnac, C. and A.G. Mikos. Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone in growth. Materials Research Part B: Applied Biomaterials 64B: 65–69, 2002.CrossRef
27.
Zurück zum Zitat Lee, K.W., S. Wang, B.C. Fox, E.L. Ritman, M.J. Yaszemski, and L. Lu. Poly(propylene fumarate) bone tissue engineering scaffold fabrication using stereolithography: effects of resin formulations and laser parameters. Biomacromolecules 8: 1077–1084, 2007.CrossRef Lee, K.W., S. Wang, B.C. Fox, E.L. Ritman, M.J. Yaszemski, and L. Lu. Poly(propylene fumarate) bone tissue engineering scaffold fabrication using stereolithography: effects of resin formulations and laser parameters. Biomacromolecules 8: 1077–1084, 2007.CrossRef
28.
Zurück zum Zitat Popov, V.K., A.V. Evseev, A.L. Ivanov, V.V. Roginski, A.I. Volozhin, and S.M. Howdle. Laser stereolithography and super critical fluid processing for custom-designed implant fabrication. Journal of Materials Science: Materials in Medicine 15: 123–128, 2004.CrossRef Popov, V.K., A.V. Evseev, A.L. Ivanov, V.V. Roginski, A.I. Volozhin, and S.M. Howdle. Laser stereolithography and super critical fluid processing for custom-designed implant fabrication. Journal of Materials Science: Materials in Medicine 15: 123–128, 2004.CrossRef
29.
Zurück zum Zitat Barry, J.J.A., A.V. Evseev, M.A. Markov, C.E. Upton, C.A. Scotchford, V.K. Popov, and S.M. Howdle. In vitro study of hydroxyapatite-based photocurable polymer composites prepared by laser stereolithography and supercritical fluid extraction. Acta Biomaterialia 4(6): 1603–1610, 2008. Barry, J.J.A., A.V. Evseev, M.A. Markov, C.E. Upton, C.A. Scotchford, V.K. Popov, and S.M. Howdle. In vitro study of hydroxyapatite-based photocurable polymer composites prepared by laser stereolithography and supercritical fluid extraction. Acta Biomaterialia 4(6): 1603–1610, 2008.
30.
Zurück zum Zitat Dhariwala, B., Hunt, E., and Boland, T. Rapid prototyping of tissue engineering constructs, using photopolymerizable hydrogels and stereolithography. Tissue Engineering 9(10): 1316–1322, 2004. Dhariwala, B., Hunt, E., and Boland, T. Rapid prototyping of tissue engineering constructs, using photopolymerizable hydrogels and stereolithography. Tissue Engineering 9(10): 1316–1322, 2004.
31.
Zurück zum Zitat Arcaute, K., L. Ochoa, F. Medina, C. Elkins, B. Mann, and Wicker, R. Three-dimensional PEG hydrogel construct fabrication using stereolithography. Materials Research Society Symposium Proceedings, 874:L5.5.1–L5.5.7, 2005. Arcaute, K., L. Ochoa, F. Medina, C. Elkins, B. Mann, and Wicker, R. Three-dimensional PEG hydrogel construct fabrication using stereolithography. Materials Research Society Symposium Proceedings, 874:L5.5.1–L5.5.7, 2005.
32.
Zurück zum Zitat Arcaute, K., L. Ochoa, B. Mann, and R. Wicker. Hydrogels in stereolithography. Proceedings of the 16th Annual Solid Freeform Fabrication Symposium, University of Texas at Austin, August 1–3, 2005. Arcaute, K., L. Ochoa, B. Mann, and R. Wicker. Hydrogels in stereolithography. Proceedings of the 16th Annual Solid Freeform Fabrication Symposium, University of Texas at Austin, August 1–3, 2005.
33.
Zurück zum Zitat Arcaute, K., L. Ochoa, B.K. Mann, and Wicker, R.B. Stereolithography of PEG hydrogel multi-lumen nerve regeneration conduits. ASME IMECE2005-81436 American Society of Mechanical Engineers International Mechanical Engineering Congress and Exposition, November 5–11, Orlando, Florida, 2005. Arcaute, K., L. Ochoa, B.K. Mann, and Wicker, R.B. Stereolithography of PEG hydrogel multi-lumen nerve regeneration conduits. ASME IMECE2005-81436 American Society of Mechanical Engineers International Mechanical Engineering Congress and Exposition, November 5–11, Orlando, Florida, 2005.
34.
Zurück zum Zitat Wohlers, T., “Wohlers Report 2004: Rapid Prototyping, Tooling and Manufacturing, State of the Industry,” Wohlers Associates, Annual Worldwide Progress Report, 2004. Wohlers, T., “Wohlers Report 2004: Rapid Prototyping, Tooling and Manufacturing, State of the Industry,” Wohlers Associates, Annual Worldwide Progress Report, 2004.
35.
Zurück zum Zitat Sandoval, J.H., L. Ochoa, A. Hernandez, K.F. Soto, L.E. Murr, R.B. Wicker. Nanotailoring stereolithography resins for unique applications using carbon nanotubes. Proceedings of the 16th Annual Solid Freeform Fabrication Symposium, University of Texas at Austin, August 1–3, 2005. Sandoval, J.H., L. Ochoa, A. Hernandez, K.F. Soto, L.E. Murr, R.B. Wicker. Nanotailoring stereolithography resins for unique applications using carbon nanotubes. Proceedings of the 16th Annual Solid Freeform Fabrication Symposium, University of Texas at Austin, August 1–3, 2005.
36.
Zurück zum Zitat Inamdar, A., M. Magana, F. Medina, Y. Grajeda, and R. Wicker. Development of an automated multiple material stereolithography machine. Proceedings of the 17th Annual Solid Freeform Fabrication Symposium, University of Texas at Austin, August 14–16, 2006. Inamdar, A., M. Magana, F. Medina, Y. Grajeda, and R. Wicker. Development of an automated multiple material stereolithography machine. Proceedings of the 17th Annual Solid Freeform Fabrication Symposium, University of Texas at Austin, August 14–16, 2006.
37.
Zurück zum Zitat Jacobs, P.F., Fundamental processes. In: Rapid Prototyping and Manufacturing: Fundamentals of Stereolithography, edited by P.F. Jacobs and D.T. Reid. Dearborn, Michigan: Society of Manufacturing Engineers, 1992, pp. 79–110. Jacobs, P.F., Fundamental processes. In: Rapid Prototyping and Manufacturing: Fundamentals of Stereolithography, edited by P.F. Jacobs and D.T. Reid. Dearborn, Michigan: Society of Manufacturing Engineers, 1992, pp. 79–110.
38.
Zurück zum Zitat Lee, I.H. and D.W. Cho. Micro-stereolithography photopolymer solidification patterns for various laser beam exposure conditions. International Journal of Advanced Manufacturing Technology 22: 410–416, 2003.CrossRef Lee, I.H. and D.W. Cho. Micro-stereolithography photopolymer solidification patterns for various laser beam exposure conditions. International Journal of Advanced Manufacturing Technology 22: 410–416, 2003.CrossRef
39.
Zurück zum Zitat Lee, J.H., R.K. Prud’homme, and I.A. Aksay. Cure depth in photopolymerization: experiments and theory. Journal of Material Research 16(2): 3536–3544, 2001.CrossRef Lee, J.H., R.K. Prud’homme, and I.A. Aksay. Cure depth in photopolymerization: experiments and theory. Journal of Material Research 16(2): 3536–3544, 2001.CrossRef
40.
Zurück zum Zitat Jacobs, P.F. “Diagnostic testing.” In: Rapid Prototyping and Manufacturing: Fundamentals of Stereolithography, edited by P.F. Jacobs and D.T. Reid. Dearborn, Michigan: Society of Manufacturing Engineers, 1992, pp. 249–285. Jacobs, P.F. “Diagnostic testing.” In: Rapid Prototyping and Manufacturing: Fundamentals of Stereolithography, edited by P.F. Jacobs and D.T. Reid. Dearborn, Michigan: Society of Manufacturing Engineers, 1992, pp. 249–285.
41.
Zurück zum Zitat D Systems. SLA-190/250 WindowpaneTM Building Procedure. In: 3D Systems AccumaxTM Toolkite User Guide. Valencia, California: 3D Systems, 1993. D Systems. SLA-190/250 WindowpaneTM Building Procedure. In: 3D Systems AccumaxTM Toolkite User Guide. Valencia, California: 3D Systems, 1993.
42.
Zurück zum Zitat DSM Somos®. Method 2: Determination of depth of penetration of photopolymer by a laser beam scan. DSM Somos® Revision 1, pp 1–4. DSM Somos®. Method 2: Determination of depth of penetration of photopolymer by a laser beam scan. DSM Somos® Revision 1, pp 1–4.
43.
Zurück zum Zitat Bryant, S.J. and K.S. Anseth. The effect of scaffold thickness on tissue engineered cartilage in photocrosslinked poly(ethylene oxide) hydrogels. Biomaterials 22: 619–626, 2001.CrossRef Bryant, S.J. and K.S. Anseth. The effect of scaffold thickness on tissue engineered cartilage in photocrosslinked poly(ethylene oxide) hydrogels. Biomaterials 22: 619–626, 2001.CrossRef
44.
Zurück zum Zitat Bryant, S.J., K.S. Anseth, D.A. Lee, and D.L. Bader. Crosslinking density influences the morphology of chondrocytes photoencapsulated in PEG hydrogels during the application of compressive strain. Journal of Orthopaedic Research 22: 1143–1149, 2004.CrossRef Bryant, S.J., K.S. Anseth, D.A. Lee, and D.L. Bader. Crosslinking density influences the morphology of chondrocytes photoencapsulated in PEG hydrogels during the application of compressive strain. Journal of Orthopaedic Research 22: 1143–1149, 2004.CrossRef
45.
Zurück zum Zitat Burdick, J.A. and K.S. Anseth. Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials 23: 4315–4323, 2002.CrossRef Burdick, J.A. and K.S. Anseth. Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials 23: 4315–4323, 2002.CrossRef
46.
Zurück zum Zitat Williams, C.G., T.K. Kim, A. Taboas, A. Malik, P. Manson, and J. Elisseeff. In vitro chondrogenesis of bone marrow derived mesenchymal stem cells in a photopolymerizing hydrogel. Tissue Engineering 9(4):679–688, 2003.CrossRef Williams, C.G., T.K. Kim, A. Taboas, A. Malik, P. Manson, and J. Elisseeff. In vitro chondrogenesis of bone marrow derived mesenchymal stem cells in a photopolymerizing hydrogel. Tissue Engineering 9(4):679–688, 2003.CrossRef
47.
Zurück zum Zitat Gunn, J.W., S.D. Turner, and B.K. Mann. Adhesive and mechanical properties of hydrogels influence neurite extension. Journal of Biomedical Materials Research, 72A (1):91–97, 2005.CrossRef Gunn, J.W., S.D. Turner, and B.K. Mann. Adhesive and mechanical properties of hydrogels influence neurite extension. Journal of Biomedical Materials Research, 72A (1):91–97, 2005.CrossRef
48.
Zurück zum Zitat Mann, B.K., A.S. Gobin, A.T. Tsai, R.H. Schmedlen, and J.L. West. Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering. Biomaterials 22: 3045–3051, 2001.CrossRef Mann, B.K., A.S. Gobin, A.T. Tsai, R.H. Schmedlen, and J.L. West. Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering. Biomaterials 22: 3045–3051, 2001.CrossRef
49.
Zurück zum Zitat Mann, B.K., R.H. Schmedlen, and J.L. West. Tethered-TGF-β increases extracellular matrix production of vascular smooth muscle cells in peptide-modified scaffolds. Biomaterials, 22:439–44, 2001.CrossRef Mann, B.K., R.H. Schmedlen, and J.L. West. Tethered-TGF-β increases extracellular matrix production of vascular smooth muscle cells in peptide-modified scaffolds. Biomaterials, 22:439–44, 2001.CrossRef
50.
Zurück zum Zitat Mann, B.K. and J.L. West. Cell adhesion peptides alter smooth muscle cell adhesion, proliferation, migration, and matrix protein synthesis on modified surfaces and in polymer scaffolds. Journal of Biomedical Materials Research, 60:86–93, 2002.CrossRef Mann, B.K. and J.L. West. Cell adhesion peptides alter smooth muscle cell adhesion, proliferation, migration, and matrix protein synthesis on modified surfaces and in polymer scaffolds. Journal of Biomedical Materials Research, 60:86–93, 2002.CrossRef
51.
Zurück zum Zitat Sawhney, A.S., C.P. Pathak, and J.A. Hubbell. Bioerodible hydrogels based on photopolymerized poly(ethylene glycol)-co-poly(alpha-hydroxy acid) diacrylate macromers. Macromolecules 26:581–587, 1993.CrossRef Sawhney, A.S., C.P. Pathak, and J.A. Hubbell. Bioerodible hydrogels based on photopolymerized poly(ethylene glycol)-co-poly(alpha-hydroxy acid) diacrylate macromers. Macromolecules 26:581–587, 1993.CrossRef
52.
Zurück zum Zitat Zalispky, S. and J.M. Harris. “Introduction to chemistry and biological applications of poly(ethylene glycol),” Chapter 1. In: Poly(ethylene glycol) Chemistry and Biological Applications, edited by S. Zalispky and J.M. Harris. Washington, DC: American Chemical Society Series 680, 1997, pp. 1–13. Zalispky, S. and J.M. Harris. “Introduction to chemistry and biological applications of poly(ethylene glycol),” Chapter 1. In: Poly(ethylene glycol) Chemistry and Biological Applications, edited by S. Zalispky and J.M. Harris. Washington, DC: American Chemical Society Series 680, 1997, pp. 1–13.
53.
Zurück zum Zitat Nguyen, K.T. and J.L. West. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23: 4307-4314, 2002.CrossRef Nguyen, K.T. and J.L. West. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23: 4307-4314, 2002.CrossRef
54.
Zurück zum Zitat Arcaute, K., B.K. Mann, and R.B. Wicker. Stereolithography of three-dimensional bioactive poly(ethylene glycol) constructs with encapsulated cells. Annals of Biomedical Engineering 34(9): 1429–1441, 2006.CrossRef Arcaute, K., B.K. Mann, and R.B. Wicker. Stereolithography of three-dimensional bioactive poly(ethylene glycol) constructs with encapsulated cells. Annals of Biomedical Engineering 34(9): 1429–1441, 2006.CrossRef
55.
Zurück zum Zitat Fisher, J.P., J.W. Vehof, D. Dean, J.P. Van der Waerden, T.A. Holland, A.G. Mikos, and J.A. Jansen. Soft and hard tissue response to photocrosslinked poly(propylene fumarate) scaffolds in a rabbit model. Journal of Biomedical Materials Research 59(3): 547–556, 2002.CrossRef Fisher, J.P., J.W. Vehof, D. Dean, J.P. Van der Waerden, T.A. Holland, A.G. Mikos, and J.A. Jansen. Soft and hard tissue response to photocrosslinked poly(propylene fumarate) scaffolds in a rabbit model. Journal of Biomedical Materials Research 59(3): 547–556, 2002.CrossRef
56.
Zurück zum Zitat Leach, J.B., K.A. Bivens, C.W. Patrick, and C.E. Schmidt. Photocrosslinked hyaluronic acid hydrogels: natural, biodegradable tissue engineering scaffolds. Biotechnology and Bioengineering 82(5): 578–589, 2003.CrossRef Leach, J.B., K.A. Bivens, C.W. Patrick, and C.E. Schmidt. Photocrosslinked hyaluronic acid hydrogels: natural, biodegradable tissue engineering scaffolds. Biotechnology and Bioengineering 82(5): 578–589, 2003.CrossRef
57.
Zurück zum Zitat Burdick, J.A., C. Chung, X. Jia, M.A. Randolph and R. Langer. Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks. Biomacromolecules 6: 386–391, 2005.CrossRef Burdick, J.A., C. Chung, X. Jia, M.A. Randolph and R. Langer. Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks. Biomacromolecules 6: 386–391, 2005.CrossRef
58.
Zurück zum Zitat Masters, K.S., D.N. Shah, L.A. Leinwand, and K.S. Anseth. Crosslinked hyaluronan scaffolds as biologically active carriers for valvular interstitial cells. Biomaterials 26: 2517–2525, 2005.CrossRef Masters, K.S., D.N. Shah, L.A. Leinwand, and K.S. Anseth. Crosslinked hyaluronan scaffolds as biologically active carriers for valvular interstitial cells. Biomaterials 26: 2517–2525, 2005.CrossRef
59.
Zurück zum Zitat Bryant, S.J., C.R. Nuttelman, and K.S. Anseth. Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. Journal of Biomaterials Science, Polymer Edition, 11(5): 439–457, 2000.CrossRef Bryant, S.J., C.R. Nuttelman, and K.S. Anseth. Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. Journal of Biomaterials Science, Polymer Edition, 11(5): 439–457, 2000.CrossRef
60.
Zurück zum Zitat Williams, C.G., A.N. Malik, T.K. Kim, P.N. Manson, and J.H Elisseeff. Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials, 26: 1211–1218, 2005.CrossRef Williams, C.G., A.N. Malik, T.K. Kim, P.N. Manson, and J.H Elisseeff. Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials, 26: 1211–1218, 2005.CrossRef
61.
Zurück zum Zitat Ciba Specialty Chemicals, Coatings Effects Segment. Ciba® Irgacure® 2959 Technical Data Sheet. Edition 2 4 98. Ciba Specialty Chemicals. Ciba Specialty Chemicals, Coatings Effects Segment. Ciba® Irgacure® 2959 Technical Data Sheet. Edition 2 4 98. Ciba Specialty Chemicals.
62.
Zurück zum Zitat McCurdy, K.G. and K.J. Laidler. Rates of polymerization of acrylates and methacrylates in emulsion systems. Canadian Journal of Chemistry 42: 825–829, 1964.CrossRef McCurdy, K.G. and K.J. Laidler. Rates of polymerization of acrylates and methacrylates in emulsion systems. Canadian Journal of Chemistry 42: 825–829, 1964.CrossRef
64.
Zurück zum Zitat Jacobs, P.F. “Introduction to part building.” In: Rapid Prototyping and Manufacturing: Fundamentals of Stereolithography, edited by P.F. Jacobs and D.T. Reid. Dearborn, Michigan: Society of Manufacturing Engineers, 1992, pp. 171–194. Jacobs, P.F. “Introduction to part building.” In: Rapid Prototyping and Manufacturing: Fundamentals of Stereolithography, edited by P.F. Jacobs and D.T. Reid. Dearborn, Michigan: Society of Manufacturing Engineers, 1992, pp. 171–194.
65.
Zurück zum Zitat Gayet, J.C., and G. Fortier. “New bioatificial hydrogels: characterization and physical properties.” In: Hydrogels and Biodegradable Polymers for Bioapplications, edited by R.M. Ottenbrite, S.J. Huang, and K. Park. Washington, D.C. American Chemical Society, 1996, pp. 17–24. Gayet, J.C., and G. Fortier. “New bioatificial hydrogels: characterization and physical properties.” In: Hydrogels and Biodegradable Polymers for Bioapplications, edited by R.M. Ottenbrite, S.J. Huang, and K. Park. Washington, D.C. American Chemical Society, 1996, pp. 17–24.
66.
Zurück zum Zitat Jiankang, H, L. Dichen, L. Yaxiong, Y. Bo, L. Bingheng, and L. Qin. Fabrication and characterization of chitosan/gelatin porous scaffolds with predefined internal microstructures. Polymer, 48: 4578–4588, 2007.CrossRef Jiankang, H, L. Dichen, L. Yaxiong, Y. Bo, L. Bingheng, and L. Qin. Fabrication and characterization of chitosan/gelatin porous scaffolds with predefined internal microstructures. Polymer, 48: 4578–4588, 2007.CrossRef
67.
Zurück zum Zitat Arcaute, K., N. Zuverza, B.K. Mann, and R.B. Wicker. Multi-material stereolithography: spatially-controlled bioactive poly(ethylene glycol) scaffolds for tissue engineering. Proceedings of the 2007 Solid Freeform Fabrication Symposium, University of Texas at Austin, August 6-8, 2007. Arcaute, K., N. Zuverza, B.K. Mann, and R.B. Wicker. Multi-material stereolithography: spatially-controlled bioactive poly(ethylene glycol) scaffolds for tissue engineering. Proceedings of the 2007 Solid Freeform Fabrication Symposium, University of Texas at Austin, August 6-8, 2007.
68.
Zurück zum Zitat Arcaute, K. Stereolithography of Poly(Ethylene Glycol) Hydrogels with Application in Tissue Engineering as Peripheral Nerve Regeneration Scaffolds. Ph.D. Dissertation. The University of Texas at El Paso. December, 2008. Arcaute, K. Stereolithography of Poly(Ethylene Glycol) Hydrogels with Application in Tissue Engineering as Peripheral Nerve Regeneration Scaffolds. Ph.D. Dissertation. The University of Texas at El Paso. December, 2008.
69.
Zurück zum Zitat Arcaute, K, B.K. Mann, and R.B. Wicker. Stereolithography of spatially-controlled multi-material bioactive poly(ethylene glycol) scaffolds. Acta Biomaterialia, 6: 1047–1054, 2010.CrossRef Arcaute, K, B.K. Mann, and R.B. Wicker. Stereolithography of spatially-controlled multi-material bioactive poly(ethylene glycol) scaffolds. Acta Biomaterialia, 6: 1047–1054, 2010.CrossRef
Metadaten
Titel
Practical Use of Hydrogels in Stereolithography for Tissue Engineering Applications
verfasst von
Karina Arcaute
Brenda K. Mann
Ryan B. Wicker
Copyright-Jahr
2011
Verlag
Springer US
DOI
https://doi.org/10.1007/978-0-387-92904-0_12

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.