Skip to main content

2006 | Buch

Praxiswissen Mikrosystemtechnik

Grundlagen — Technologien — Anwendungen

verfasst von: Friedemann Völklein, Thomas Zetterer

Verlag: Vieweg+Teubner

insite
SUCHEN

Über dieses Buch

1.1 Von der Mikroelektronik zur Mikrosystemtechnik Es gibt zweifellos kein Gebiet der Wissenschaft und Technik des 20. Jahrhunderts, das eine vergleichbar stürmische Entwicklung erfahren hat wie die Mikroelektronik in den vergangenen 50 Jahren. Mit der Erfindung des Transistors (1948) und der Herstellung erster integrierter Schaltungen auf der Basis des Halbleitermaterials Silizium (1958) begann eine technische Revolution, die mit ihren Ergebnissen und Produkten inzwischen in fast alle Lebensbereiche unserer Gesellschaft hineinwirkt. Ohne die Erfolge der Mikroelektronik wäre die moderne Informations- und Kommunikationstechnik, die inzwischen die Berufswelt vieler Menschen wesentlich verändert hat, nicht denkbar. Das gilt auch für andere Bereiche wie z. B. die Me- zin-, die Verkehrs- und die Produktionstechnik. Der große technologische Fortschritt der Mikroelektronik beruht auf Miniaturisierung und Integration. Vor der Mikroelektronik wurden elektrische/elektronische Schaltungen aus - chanisch gefertigten Bauteilen wie Kondensatoren, Widerständen oder Elektronenröhren - sammengefügt und individuell abgeglichen. Aufgrund der Größe der Bauelemente war der Platzbedarf und das Gewicht hoch, die Packungs- und Funktionsdichte gering. Durch die - kroelektronik wandelte sich die Fertigung elektronischer Systeme grundlegend. Die B- elemente einer Schaltung wurden nun durch photolithographische Strukturierung und durch Schichttechnologien auf einem gemeinsamen Halbleiter-Substrat, dem Siliziumwafer, erzeugt.

Inhaltsverzeichnis

Frontmatter
1. Einleitung
Auszug
Es gibt zweifellos kein Gebiet der Wissenschaft und Technik des 20. Jahrhunderts, das eine vergleichbar stürmische Entwicklung erfahren hat wie die Mikroelektronik in den vergangenen 50 Jahren. Mit der Erfindung des Transistors (1948) und der Herstellung erster integrierter Schaltungen auf der Basis des Halbleitermaterials Silizium (1958) begann eine technische Revolution, die mit ihren Ergebnissen und Produkten inzwischen in fast alle Lebensbereiche unserer Gesellschaft hineinwirkt. Ohne die Erfolge der Mikroelektronik wäre die moderne Informations- und Kommunikationstechnik, die inzwischen die Berufswelt vieler Menschen wesentlich verändert hat, nicht denkbar. Das gilt auch für andere Bereiche wie z. B. die Medizin-, die Verkehrs- und die Produktionstechnik.
2. Basistechnologien der Mikrosystemtechnik
Auszug
Die typische Umgebung für die Entwicklung und Fertigung von mikrotechnischen Produkten ist der Reinraum. Er gewährleistet saubere Umgebungsbedingungen in Form von gefilterter Luft in dem Bereich, in dem Substrate partikelarm mit geeigneten Prozessmedien und -anlagen prozessiert und gehandhabt werden. Außerdem erfolgt in peripheren Einheiten die Bereitstellung aller erforderlichen Medien (z. B. Prozessgase, Druckluft, DI-Wasser, Kühlwasser, Stromversorgung, Vakuum) sowie die Entsorgung (toxische Abluft, Abwasserneutralisation). Der eigentliche Reinraum, die erforderliche Klimatechnik und die peripheren Einheiten bilden einen komplex organisierten, zusammenhängenden und mit Hilfe von Sensoren überwachten Bereich. Seine detaillierte Auslegung, geometrische Anordnung und Eigenschaften werden durch die Anwendung, d. h. die in dieser Fertigungsumgebung herzustellenden Produkte, definiert. Die Größe eines Reinraums kann dabei wenige Quadratmeter (z. B. für einen isolierten Mikromontageplatz) oder mehrere tausend Quadratmeter für eine komplette Prozesslinie (z. B. eine Speicherchipfertigung) betragen.
3. Grundstrukturen und Anwendungen
Auszug
Erste mikromechanische Funktionselemente und Komponenten wurden unter Anwendung der Silizium-Halbleitertechnologie bereits Anfang der 60er Jahre entwickelt und gefertigt: 1962 wurden Siliziumwafer als Verformungskörper mit integrierten Piezowiderständen realisiert [Tufte62]. Als kommerziell erfolgreiche Produkte kamen seit Beginn der 70er Jahre Drucksensoren auf den Markt, bei denen Silizium-Membranen mit integrierten Piezowiderständen als mikromechanische Sensorelemente mit bipolaren integrierten Schaltungen verknüpft waren. Breite Anwendung finden inzwischen Beschleunigungssensoren (z. B. in Airbag-Systemen), bei denen die Trägheitskraft einer „seismischen Mikro-Masse“ zur Auslenkung eines mikromechanischen Verformungskörpers führt. Diese Auslenkung ist eine Funktion der Beschleunigung und wird meist kapazitiv oder piezoresistiv detektiert.
4. Systemintegration
Auszug
Ein Mikrosystem ist eine komplexe Einheit von verschiedenen miniaturisierten Komponenten, deren typische Strukturgrößen im Mikrometer- und/oder Nanometerbereich liegen. Bild 4.1-1 zeigt schematisch den Aufbau von Mikrosystemen und versucht, die verwendeten Begriffe zu systematisieren. Komponenten eines Mikrosystems werden meist hinsichtlich ihrer Funktion identifiziert und stellen unter diesem Gesichtspunkt ein eigenständiges Gebilde (Subsystem) dar (z. B. Sensor, Aktor, mikroelektronischer Schaltkreis, Datenspeicher). Man kann sie auch hinsichtlich ihrer primären Funktionalität klassifizieren, z. B. als mikromechanische, mikrooptische, mikrofluidische Komponente.
5. Beispiele komplexer Mikrosysteme
Auszug
Die Rastersondenmikroskopie ist die empfindlichste Art der Charakterisierung von Oberflächen. Seit der Entwicklung der Rastertunnelmikroskopie (RTM) [Binnig82], die auf elektrisch leitende Proben beschränkt war, haben sich eine Reihe weiterer Rastersondentechniken als eigenständige oder kombinierte Verfahren entwickelt. Sie liefern neben Informationen über elektrische (STM, Scanning Tunneling Microscopy), magnetische (MFM, Magnetic Force Microscopy) und optische Eigenschaften (SNOM, Scanning Near Field Optical Microscopy) insbesondere auch Informationen zur Top01ogie (AFM, Atomic Force Microscopy) einer Probenoberfläche, z. T. auf atomarer Skala [Binnig86, Sarid91, Minne98]. Für derartige Mikroskopieverfahren geeignete Sonden können insbesondere durch mikrotechnische Herstellungsprozesse erzeugt werden und besitzen gegenüber konventionell hergestellten Sonden die Vorteile der Massenfertigung und Integrierbarkeit unterschiedlicher funktioneller Elemente.
Backmatter
Metadaten
Titel
Praxiswissen Mikrosystemtechnik
verfasst von
Friedemann Völklein
Thomas Zetterer
Copyright-Jahr
2006
Verlag
Vieweg+Teubner
Electronic ISBN
978-3-8348-9105-1
Print ISBN
978-3-528-13891-2
DOI
https://doi.org/10.1007/978-3-8348-9105-1

Neuer Inhalt