Skip to main content
Erschienen in: Water Resources Management 15/2020

11.11.2020

Predictability of Monthly Streamflow Time Series and its Relationship with Basin Characteristics: an Empirical Study Based on the MOPEX Basins

verfasst von: Ran-Ran He, Yuanfang Chen, Qin Huang, Zheng-Wei Pan, Yong Liu

Erschienen in: Water Resources Management | Ausgabe 15/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Machine learning (ML) models have been applied to monthly streamflow forecasting in recent decades. In this study, forecasting skills of eight ML models are evaluated based on the Model Parameter Estimation Experiment (MOPEX) dataset. We consider two skill scores, i.e., the Nash–Sutcliffe efficiency (NSE) and the adjusted NSE (ANSE), and the latter is the skill score based on the interannual mean monthly value (MMV) as the reference (benchmark) model. Furthermore, NSE of the MMV model (NSEmmv) is used as a measure of the seasonality of monthly streamflow, as it is the ratio of variance explained by the MMV process. An important result is that forecasting skills of ML models for monthly streamflow are largely controlled by NSEmmv. Moreover, based on comparisons of different ML models, we have found that the selection of models is not a dominating factor impacting the final skill. Three key factors influencing NSE, i.e., NSEmmv, the base flow index (BFI) and the aridity index (AI), are explored in this paper. Specifically, NSEmmv impacts NSE directly and is the predominant factor; BFI influences the memory of the monthly streamflow and therefore influences NSE. The relationship between AI and NSE is much complex and indirect. Firstly, basins with higher AI tend to have lower NSEmmv, and this will lead to lower NSE; secondly, basins with higher AI tend to have lower BFI, which will also lead to lower NSE; thirdly, for a given BFI level, basins with higher AI tend to have higher memory and higher NSE. For ANSE, basins with AI between 1 and 2 show higher ANSE, which corresponds to higher autocorrelation coefficients.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abudu S et al (2010) Comparison of performance of statistical models in forecasting monthly streamflow of Kizil River, China. Water Science and Engineering 3(3):269–281 Abudu S et al (2010) Comparison of performance of statistical models in forecasting monthly streamflow of Kizil River, China. Water Science and Engineering 3(3):269–281
Zurück zum Zitat Ahani A, Shourian M, Rad PR (2018) Performance assessment of the linear, nonlinear and nonparametric data driven models in river flow forecasting. Water Resour Manag 32(2):383–399CrossRef Ahani A, Shourian M, Rad PR (2018) Performance assessment of the linear, nonlinear and nonparametric data driven models in river flow forecasting. Water Resour Manag 32(2):383–399CrossRef
Zurück zum Zitat Ahmed NK, Atiya AF, Gayar NE, el-Shishiny H (2010) An empirical comparison of machine learning models for time series forecasting. Econ Rev 29(5–6):594–621CrossRef Ahmed NK, Atiya AF, Gayar NE, el-Shishiny H (2010) An empirical comparison of machine learning models for time series forecasting. Econ Rev 29(5–6):594–621CrossRef
Zurück zum Zitat Andy L, Matthew W (2002) Classification and regression by randomForest. R News 2(3):18–22 Andy L, Matthew W (2002) Classification and regression by randomForest. R News 2(3):18–22
Zurück zum Zitat AniShabri and Suhartono (2012) Streamflow forecasting using least-squares support vector machines. International Association of Scientific Hydrology Bulletin 57(7):1275–1293CrossRef AniShabri and Suhartono (2012) Streamflow forecasting using least-squares support vector machines. International Association of Scientific Hydrology Bulletin 57(7):1275–1293CrossRef
Zurück zum Zitat Araghinejad S, Burn D, Karamouz M (2006) Long-lead probabilistic forecasting of streamflow using ocean-atmospheric and hydrological predictors. Water Resour Res 42:W03431CrossRef Araghinejad S, Burn D, Karamouz M (2006) Long-lead probabilistic forecasting of streamflow using ocean-atmospheric and hydrological predictors. Water Resour Res 42:W03431CrossRef
Zurück zum Zitat Bontempi, G., Ben Taieb, S. and Le Borgne, Y.-A., 2013. Machine learning strategies for time series forecasting Bontempi, G., Ben Taieb, S. and Le Borgne, Y.-A., 2013. Machine learning strategies for time series forecasting
Zurück zum Zitat Elganainy MA, Eldwer AE (2018) Stochastic forecasting models of the monthly Streamflow for the Blue Nile at Eldiem Station. Water Resources 45(3):326–337CrossRef Elganainy MA, Eldwer AE (2018) Stochastic forecasting models of the monthly Streamflow for the Blue Nile at Eldiem Station. Water Resources 45(3):326–337CrossRef
Zurück zum Zitat Erdal HI, Karakurt O (2013) Advancing monthly streamflow prediction accuracy of CART models using ensemble learning paradigms. J Hydrol 477:119–128CrossRef Erdal HI, Karakurt O (2013) Advancing monthly streamflow prediction accuracy of CART models using ensemble learning paradigms. J Hydrol 477:119–128CrossRef
Zurück zum Zitat Fan YR, Huang W, Huang GH, Li Z, Li YP, Wang XQ, Cheng GH, Jin L (2015) A stepwise-cluster forecasting approach for monthly streamflows based on climate teleconnections. Stoch Env Res Risk A 29(6):1557–1569CrossRef Fan YR, Huang W, Huang GH, Li Z, Li YP, Wang XQ, Cheng GH, Jin L (2015) A stepwise-cluster forecasting approach for monthly streamflows based on climate teleconnections. Stoch Env Res Risk A 29(6):1557–1569CrossRef
Zurück zum Zitat Gong G, Wang L, Condon L, Shearman A, Lall U (2010) A simple framework for incorporating seasonal Streamflow forecasts into existing water resource management Practices1. JAWRA Journal of the American Water Resources Association 46(3):574–585CrossRef Gong G, Wang L, Condon L, Shearman A, Lall U (2010) A simple framework for incorporating seasonal Streamflow forecasts into existing water resource management Practices1. JAWRA Journal of the American Water Resources Association 46(3):574–585CrossRef
Zurück zum Zitat Gustard, A. and Demuth, S., 2009. Manual on low-flow estimation and prediction. Opera Gustard, A. and Demuth, S., 2009. Manual on low-flow estimation and prediction. Opera
Zurück zum Zitat Koffler D, Laaha G (2012) LFSTAT-an R-package for low-flow analysis. ed. EGU General Assembly Conference Abstracts, 8940 Koffler D, Laaha G (2012) LFSTAT-an R-package for low-flow analysis. ed. EGU General Assembly Conference Abstracts, 8940
Zurück zum Zitat Maity R, Bhagwat PP, Bhatnagar A (2010) Potential of support vector regression for prediction of monthly streamflow using endogenous property. Hydrol Process 24(7):917–923CrossRef Maity R, Bhagwat PP, Bhatnagar A (2010) Potential of support vector regression for prediction of monthly streamflow using endogenous property. Hydrol Process 24(7):917–923CrossRef
Zurück zum Zitat Markham CG (1970) Seasonality of precipitation in the United States. Ann Assoc Am Geogr 60(3):593–597CrossRef Markham CG (1970) Seasonality of precipitation in the United States. Ann Assoc Am Geogr 60(3):593–597CrossRef
Zurück zum Zitat Mimikou M et al (1992) The influence of basin aridity on the efficiency of runoff predicting models. Hydrol Res 23(2):105–120CrossRef Mimikou M et al (1992) The influence of basin aridity on the efficiency of runoff predicting models. Hydrol Res 23(2):105–120CrossRef
Zurück zum Zitat Moss ME, Bryson MC (1974) Autocorrelation structure of monthly streamflows. Water Resour Res 10(4):737–744CrossRef Moss ME, Bryson MC (1974) Autocorrelation structure of monthly streamflows. Water Resour Res 10(4):737–744CrossRef
Zurück zum Zitat Papacharalampous G, Tyralis H, Koutsoyiannis D (2019) Comparison of stochastic and machine learning methods for multi-step ahead forecasting of hydrological processes. Stoch Env Res Risk A 33(2):481–514CrossRef Papacharalampous G, Tyralis H, Koutsoyiannis D (2019) Comparison of stochastic and machine learning methods for multi-step ahead forecasting of hydrological processes. Stoch Env Res Risk A 33(2):481–514CrossRef
Zurück zum Zitat Patel SS, Ramachandran P (2015) A comparison of machine learning techniques for modeling river flow time series: the case of upper Cauvery river basin. Water Resour Manag 29(2):589–602CrossRef Patel SS, Ramachandran P (2015) A comparison of machine learning techniques for modeling river flow time series: the case of upper Cauvery river basin. Water Resour Manag 29(2):589–602CrossRef
Zurück zum Zitat Petersen, T., Devineni, N. and Sankarasubramanian, A. 2012. Seasonality of monthly runoff over the continental United States: causality and relations to mean annual and mean monthly distributions of moisture and energy. Journal of Hydrology, 468-469(none), 139-150 Petersen, T., Devineni, N. and Sankarasubramanian, A. 2012. Seasonality of monthly runoff over the continental United States: causality and relations to mean annual and mean monthly distributions of moisture and energy. Journal of Hydrology, 468-469(none), 139-150
Zurück zum Zitat Rahman MM, Lu M, Kyi KH (2015) Variability of soil moisture memory for wet and dry basins. J Hydrol 523:107–118CrossRef Rahman MM, Lu M, Kyi KH (2015) Variability of soil moisture memory for wet and dry basins. J Hydrol 523:107–118CrossRef
Zurück zum Zitat Ridgeway G (2005) Generalized boosted models: a guide to the GBM package. Vignette of R package gbm, 1-12 Ridgeway G (2005) Generalized boosted models: a guide to the GBM package. Vignette of R package gbm, 1-12
Zurück zum Zitat Schaake J, Cong S, Duan Q (2006) The US MOPEX data set. IAHS Publ 307:9 Schaake J, Cong S, Duan Q (2006) The US MOPEX data set. IAHS Publ 307:9
Zurück zum Zitat Schaefli B, Gupta HV (2007) Do Nash values have value? Hydrol Process 21(15):2075–2080CrossRef Schaefli B, Gupta HV (2007) Do Nash values have value? Hydrol Process 21(15):2075–2080CrossRef
Zurück zum Zitat Shortridge JE, Guikema SD, Zaitchik BF (2016) Machine learning methods for empirical streamflow simulation: a comparison of model accuracy, interpretability, and uncertainty in seasonal watersheds. Hydrology and Earth System Sciences,20,7(2016-07-04) 20(7):2611–2628CrossRef Shortridge JE, Guikema SD, Zaitchik BF (2016) Machine learning methods for empirical streamflow simulation: a comparison of model accuracy, interpretability, and uncertainty in seasonal watersheds. Hydrology and Earth System Sciences,20,7(2016-07-04) 20(7):2611–2628CrossRef
Zurück zum Zitat Sun AY, Wang D, Xu X (2014) Monthly streamflow forecasting using Gaussian process regression. J Hydrol 511:72–81CrossRef Sun AY, Wang D, Xu X (2014) Monthly streamflow forecasting using Gaussian process regression. J Hydrol 511:72–81CrossRef
Zurück zum Zitat Wang W et al. (2004) Predictability of streamflow processes of the Yellow River. ed. Proceedings of the sixth international conference on Hydroinformatics. World Scientific, Singapore, 1261–1268 Wang W et al. (2004) Predictability of streamflow processes of the Yellow River. ed. Proceedings of the sixth international conference on Hydroinformatics. World Scientific, Singapore, 1261–1268
Zurück zum Zitat Wilks DS (2011) Statistical methods in the atmospheric sciences. Elsevier Wilks DS (2011) Statistical methods in the atmospheric sciences. Elsevier
Zurück zum Zitat Wu C, Chau K-W (2010) Data-driven models for monthly streamflow time series prediction. Eng Appl Artif Intell 23(8):1350–1367CrossRef Wu C, Chau K-W (2010) Data-driven models for monthly streamflow time series prediction. Eng Appl Artif Intell 23(8):1350–1367CrossRef
Metadaten
Titel
Predictability of Monthly Streamflow Time Series and its Relationship with Basin Characteristics: an Empirical Study Based on the MOPEX Basins
verfasst von
Ran-Ran He
Yuanfang Chen
Qin Huang
Zheng-Wei Pan
Yong Liu
Publikationsdatum
11.11.2020
Verlag
Springer Netherlands
Erschienen in
Water Resources Management / Ausgabe 15/2020
Print ISSN: 0920-4741
Elektronische ISSN: 1573-1650
DOI
https://doi.org/10.1007/s11269-020-02708-z

Weitere Artikel der Ausgabe 15/2020

Water Resources Management 15/2020 Zur Ausgabe