Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 5/2016

19.01.2016

Predicted stresses in a ball-grid-array (BGA)/column-grid-array (CGA) assembly with an epoxy adhesive at its ends

verfasst von: E. Suhir, R. Ghaffarian

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 5/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A simple, easy-to-use and physically meaningful predictive model is suggested for the assessment of the thermal stresses in a ball-grid-array (BGA) or a column-grid-array (CGA) system with an epoxy adhesive at the peripheral portions of the assembly. It is shown that the application of such a design can lead to a considerable relief in the interfacial stress. The paper is a continuation and an extension of the recently published paper, in which a low modulus solder was considered for the peripheral portions of the assembly. The important difference is that while the soldering temperature has been assumed to be the same for the solder material throughout the assembly, the peripheral epoxy adhesive is applied at an appreciably lower (curing) temperature than the solder at the assembly’s mid-portion. The numerical example has indicated that the application of the CGA technology enables one to achieve a 19.25 % stress relief in the case of an epoxy adhesive, while a 34.11 % stress relief could be expected in the case of a low modulus solder at the assembly ends. When a BGA technology is considered, the application of an epoxy or a low modulus solder at the peripheral portions of the assembly leads to the stress relief of about 14.42 % in the case of an epoxy and of about 12.80 % in the case of a low modulus solder. When CGA technology is used, the application of an epoxy at the peripheral portions of the assembly leads to about 8.70 % stress relief, while the application of a low modulus solder results in about 24.10 % relief. It is concluded that, with the yield stress in shear of 1.85 kgf/mm2 for the solder in the assembly’s mid-portion and 1.35 kgf/mm2—for the peripheral solder material, the application of the CGA technology in combination with an epoxy adhesive or a low modulus solder at the assembly ends might enable one to avoid inelastic strains in the solder, thereby increasing dramatically its fatigue lifetime, just because the low-cycle fatigue situation will be replaced in such a case with the elastic fatigue condition.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J.R. Martin, R.A. Anderson, Compliant diaphragm material. US Patent #4,837,068 (1989) J.R. Martin, R.A. Anderson, Compliant diaphragm material. US Patent #4,837,068 (1989)
2.
Zurück zum Zitat Z. Kovac et al., Compliant interface for semiconductor chip and method therefor. US Patent #6,133,639 (2000) Z. Kovac et al., Compliant interface for semiconductor chip and method therefor. US Patent #6,133,639 (2000)
3.
Zurück zum Zitat E. Suhir, Electronic assembly having improved resistance to delamination. US Patent #6,028,772 (2000) E. Suhir, Electronic assembly having improved resistance to delamination. US Patent #6,028,772 (2000)
4.
Zurück zum Zitat E. Suhir, Device and method of controlling the bowing of a soldered or adhesively bonded assembly. US Patent #6,239,382 (2001) E. Suhir, Device and method of controlling the bowing of a soldered or adhesively bonded assembly. US Patent #6,239,382 (2001)
5.
Zurück zum Zitat T.H. Di Stefano et al., Compliant microelectronic mounting device. US Patent #6,370,032 (2002) T.H. Di Stefano et al., Compliant microelectronic mounting device. US Patent #6,370,032 (2002)
6.
Zurück zum Zitat E. Suhir, Bi-material assembly adhesively bonded at the ends and fabrication method. US Patent #6,460,753 (2002) E. Suhir, Bi-material assembly adhesively bonded at the ends and fabrication method. US Patent #6,460,753 (2002)
7.
Zurück zum Zitat E. Suhir, Coated optical glass fiber. US Patent #6,647,195 (2003) E. Suhir, Coated optical glass fiber. US Patent #6,647,195 (2003)
8.
Zurück zum Zitat Z. Kovac et al., Methods for making electronic assemblies including compliant interfaces. US Patent #6,525,429 (2003) Z. Kovac et al., Methods for making electronic assemblies including compliant interfaces. US Patent #6,525,429 (2003)
9.
Zurück zum Zitat E.C. Paterson et al., Mechanical highly compliant thermal interface pad. US Patent #6,910,271 (2005) E.C. Paterson et al., Mechanical highly compliant thermal interface pad. US Patent #6,910,271 (2005)
10.
Zurück zum Zitat Z. Kovac et al., Methods of making microelectronic assemblies including compliant interfaces. US Patent #6,870,272 (2005) Z. Kovac et al., Methods of making microelectronic assemblies including compliant interfaces. US Patent #6,870,272 (2005)
11.
Zurück zum Zitat R. Zeyfang, Stresses and strains in a plate bonded to a substrate: semiconductor devices. Solid State Electron. 14, 1035–1039 (1971)CrossRef R. Zeyfang, Stresses and strains in a plate bonded to a substrate: semiconductor devices. Solid State Electron. 14, 1035–1039 (1971)CrossRef
12.
Zurück zum Zitat D. Chen, S.T. Cheng, T.D. Gerhardt, Thermal stresses in laminated beams. J. Therm. Stress. 5, 67–84 (1982)CrossRef D. Chen, S.T. Cheng, T.D. Gerhardt, Thermal stresses in laminated beams. J. Therm. Stress. 5, 67–84 (1982)CrossRef
13.
Zurück zum Zitat F.-V. Chang, Thermal contact stresses of Bi-metal strip thermostat. Appl. Math. Mech. 4(3), 363–376 (1983)CrossRef F.-V. Chang, Thermal contact stresses of Bi-metal strip thermostat. Appl. Math. Mech. 4(3), 363–376 (1983)CrossRef
14.
Zurück zum Zitat J. Padovan, Anisotropic thermal stress analysis. Therm. Stress. I 1, 143–262 (1986) J. Padovan, Anisotropic thermal stress analysis. Therm. Stress. I 1, 143–262 (1986)
15.
Zurück zum Zitat E. Suhir, Calculated thermally induced stresses in adhesively bonded and soldered assemblies, in Proceedings of the International Symposium on Microelectronics, ISHM, Atlanta (1986) E. Suhir, Calculated thermally induced stresses in adhesively bonded and soldered assemblies, in Proceedings of the International Symposium on Microelectronics, ISHM, Atlanta (1986)
16.
Zurück zum Zitat E. Suhir, Stresses in bi-metal thermostats. ASME J. Appl. Mech. 53(3), 657–660 (1986)CrossRef E. Suhir, Stresses in bi-metal thermostats. ASME J. Appl. Mech. 53(3), 657–660 (1986)CrossRef
17.
Zurück zum Zitat E. Suhir, Die attachment design and its influence on the thermally induced stresses in the die and the attachment, in Proceedings of the 37th Electrical and Computer Conference, IEEE, Boston, (1987), pp. 508–517 E. Suhir, Die attachment design and its influence on the thermally induced stresses in the die and the attachment, in Proceedings of the 37th Electrical and Computer Conference, IEEE, Boston, (1987), pp. 508–517
18.
Zurück zum Zitat E. Suhir, An approximate analysis of stresses in multilayer elastic thin films. ASME J. Appl. Mech. 55(3), 143–148 (1988)CrossRef E. Suhir, An approximate analysis of stresses in multilayer elastic thin films. ASME J. Appl. Mech. 55(3), 143–148 (1988)CrossRef
19.
Zurück zum Zitat A. Kuo, Thermal stresses at the edge of a bimetallic thermostat. ASME J. Appl. Mech. 56, 585–589 (1989)CrossRef A. Kuo, Thermal stresses at the edge of a bimetallic thermostat. ASME J. Appl. Mech. 56, 585–589 (1989)CrossRef
20.
Zurück zum Zitat E. Suhir, Interfacial stresses in bi-metal thermostats. ASME J. Appl. Mech. 56(3), 595–600 (1989)CrossRef E. Suhir, Interfacial stresses in bi-metal thermostats. ASME J. Appl. Mech. 56(3), 595–600 (1989)CrossRef
21.
Zurück zum Zitat E. Suhir, Axisymmetric elastic deformations of a finite circular cylinder with application to low temperature strains and stresses in solder joints. ASME J. Appl. Mech. 56(2), 328–333 (1989)CrossRef E. Suhir, Axisymmetric elastic deformations of a finite circular cylinder with application to low temperature strains and stresses in solder joints. ASME J. Appl. Mech. 56(2), 328–333 (1989)CrossRef
22.
Zurück zum Zitat E. Suhir, B. Poborets, Solder glass attachment in cerdip/cerquad packages: thermally induced stresses and mechanical reliability, in Electronic Components and Technology Conference, 40th, IEEE, (1990), pp. 1043–1052 E. Suhir, B. Poborets, Solder glass attachment in cerdip/cerquad packages: thermally induced stresses and mechanical reliability, in Electronic Components and Technology Conference, 40th, IEEE, (1990), pp. 1043–1052
23.
Zurück zum Zitat J.W. Eischen, C. Chung, J.H. Kim, Realistic modeling of the edge effect stresses in bimaterial elements. ASME J. Electron. Packag. 112(1), 16–23 (1990)CrossRef J.W. Eischen, C. Chung, J.H. Kim, Realistic modeling of the edge effect stresses in bimaterial elements. ASME J. Electron. Packag. 112(1), 16–23 (1990)CrossRef
24.
Zurück zum Zitat P.M. Hall et al., Strains in aluminum-adhesive-ceramic tri-layers. ASME J. Electron. Packag. 112(4), 288–302 (1990)CrossRef P.M. Hall et al., Strains in aluminum-adhesive-ceramic tri-layers. ASME J. Electron. Packag. 112(4), 288–302 (1990)CrossRef
25.
Zurück zum Zitat A.Y. Kuo, Thermal stress at the edge of a bi-metallic thermostat. ASME J. Appl. Mech. 56(3), 585–589 (1989)CrossRef A.Y. Kuo, Thermal stress at the edge of a bi-metallic thermostat. ASME J. Appl. Mech. 56(3), 585–589 (1989)CrossRef
26.
Zurück zum Zitat C.A. Klein, Thermal stress modeling for diamond-coated optical windows, in 22nd Annual Boulder Damage Symposium, Boulder, (1990), pp. 488–509 C.A. Klein, Thermal stress modeling for diamond-coated optical windows, in 22nd Annual Boulder Damage Symposium, Boulder, (1990), pp. 488–509
27.
Zurück zum Zitat J.T. Gillanders, R.A. Riddle, R.D. Streit, I. Finnie, Methods for determining the mode I and mode II fracture toughness of glass using thermal stresses. ASME J. Eng. Mater. Technol. 112, 151–156 (1990)CrossRef J.T. Gillanders, R.A. Riddle, R.D. Streit, I. Finnie, Methods for determining the mode I and mode II fracture toughness of glass using thermal stresses. ASME J. Eng. Mater. Technol. 112, 151–156 (1990)CrossRef
28.
Zurück zum Zitat A.O. Cifuentes, Elastoplastic analysis of bi-material beams subjected to thermal loads. ASME J. Electron. Packag. 113(4), 355–358 (1991)CrossRef A.O. Cifuentes, Elastoplastic analysis of bi-material beams subjected to thermal loads. ASME J. Electron. Packag. 113(4), 355–358 (1991)CrossRef
29.
Zurück zum Zitat H.S. Morgan, Thermal stresses in layered electrical assemblies bonded with solder. ASME J. Electron. Packag. 113(4), 350–354 (1991)CrossRef H.S. Morgan, Thermal stresses in layered electrical assemblies bonded with solder. ASME J. Electron. Packag. 113(4), 350–354 (1991)CrossRef
30.
Zurück zum Zitat T. Hatsuda, H. Doi, T. Hayasida, Thermal strains in flip-chip joints of die-bonded chip packages, in Proceedings of the EPS Conference, San-Diego (1991) T. Hatsuda, H. Doi, T. Hayasida, Thermal strains in flip-chip joints of die-bonded chip packages, in Proceedings of the EPS Conference, San-Diego (1991)
31.
Zurück zum Zitat E. Suhir, Mechanical behavior and reliability of solder joint interconnections in thermally matched assemblies, in Proceedings of the 42nd Electronic Components and Technology Conference, IEEE, San-Diego, (1992), pp. 563–572 E. Suhir, Mechanical behavior and reliability of solder joint interconnections in thermally matched assemblies, in Proceedings of the 42nd Electronic Components and Technology Conference, IEEE, San-Diego, (1992), pp. 563–572
32.
Zurück zum Zitat J.H. Lau (ed.), Thermal stress and strain in microelectronics packaging (Van-Nostrand Reinhold, New York, 1993) J.H. Lau (ed.), Thermal stress and strain in microelectronics packaging (Van-Nostrand Reinhold, New York, 1993)
33.
Zurück zum Zitat V. Mishkevich, E. Suhir, Simplified approach to the evaluation of thermally induced stresses in bi-material structures, in Structural analysis in microelectronics and fiber optics, ed. by E. Suhir (ASME Press, New York, 1993), pp. 563–572 V. Mishkevich, E. Suhir, Simplified approach to the evaluation of thermally induced stresses in bi-material structures, in Structural analysis in microelectronics and fiber optics, ed. by E. Suhir (ASME Press, New York, 1993), pp. 563–572
34.
Zurück zum Zitat E. Suhir, Approximate evaluation of the elastic thermal stresses in a thin film fabricated on a very thick circular substrate. ASME J. Electron. Packag. 116(3), 171–176 (1994)CrossRef E. Suhir, Approximate evaluation of the elastic thermal stresses in a thin film fabricated on a very thick circular substrate. ASME J. Electron. Packag. 116(3), 171–176 (1994)CrossRef
35.
Zurück zum Zitat E. Suhir, Approximate evaluation of the interfacial shearing stress in circular double lap shear joints, with application to dual-coated optical fibers. Int. J. Solids Struct. 31(23), 3261–3283 (1994)CrossRef E. Suhir, Approximate evaluation of the interfacial shearing stress in circular double lap shear joints, with application to dual-coated optical fibers. Int. J. Solids Struct. 31(23), 3261–3283 (1994)CrossRef
36.
Zurück zum Zitat K.E. Hokanson, A. Bar-Cohen, Shear-based optimization of adhesive thickness for die bonding. IEEE Trans. Compon. Hybrids Manuf. Technol. 18(3), 578–584 (1995)CrossRef K.E. Hokanson, A. Bar-Cohen, Shear-based optimization of adhesive thickness for die bonding. IEEE Trans. Compon. Hybrids Manuf. Technol. 18(3), 578–584 (1995)CrossRef
37.
Zurück zum Zitat E. Suhir, Solder materials and joints in fiber optics: reliability requirements and predicted stresses, in Proceedings of the International Symposium on “Design and Reliability of Solders and Solder Interconnections”, Orlando, (1997), pp. 25–33 E. Suhir, Solder materials and joints in fiber optics: reliability requirements and predicted stresses, in Proceedings of the International Symposium on “Design and Reliability of Solders and Solder Interconnections”, Orlando, (1997), pp. 25–33
38.
Zurück zum Zitat E. Suhir, Thermal stress failures in microelectronics and photonics: prediction and prevention. Future Circuits Int. 5, 20 (1999) E. Suhir, Thermal stress failures in microelectronics and photonics: prediction and prevention. Future Circuits Int. 5, 20 (1999)
39.
Zurück zum Zitat E. Suhir, Adhesively bonded assemblies with identical non-deformable adherends: predicted thermal stresses in the adhesive layer. Compos. Interfaces 6(2), 62 (1999) E. Suhir, Adhesively bonded assemblies with identical non-deformable adherends: predicted thermal stresses in the adhesive layer. Compos. Interfaces 6(2), 62 (1999)
40.
Zurück zum Zitat E. Suhir, Predicted stresses in a circular substrate/thin-film system subjected to the change in temperature. J. Appl. Phys. 88(5), 2363–2370 (2000)CrossRef E. Suhir, Predicted stresses in a circular substrate/thin-film system subjected to the change in temperature. J. Appl. Phys. 88(5), 2363–2370 (2000)CrossRef
41.
Zurück zum Zitat E. Carrera, An assessment of mixed and classical theories for the thermal stress analysis of orthotropic multilayered plates. J. Therm. Stress. 23(9), 97–831 (2000)CrossRef E. Carrera, An assessment of mixed and classical theories for the thermal stress analysis of orthotropic multilayered plates. J. Therm. Stress. 23(9), 97–831 (2000)CrossRef
42.
Zurück zum Zitat Y. Gao, J.-H. Zhao, A practical die stress model and its applications in flip-chip packages, in Proceedings of 7th Intersociety Conference on Thermal and Thermo-mechanical Phenomena in Electronic Systems, Las Vegas, (2000) Y. Gao, J.-H. Zhao, A practical die stress model and its applications in flip-chip packages, in Proceedings of 7th Intersociety Conference on Thermal and Thermo-mechanical Phenomena in Electronic Systems, Las Vegas, (2000)
43.
Zurück zum Zitat W.-R. Jong, M.-L. Chang, The analysis of warpage for integrated circuit devices. J. Reinf. Plast. Compos. 19(2), 64–180 (2000)CrossRef W.-R. Jong, M.-L. Chang, The analysis of warpage for integrated circuit devices. J. Reinf. Plast. Compos. 19(2), 64–180 (2000)CrossRef
44.
Zurück zum Zitat E. Suhir, Analysis of interfacial thermal stresses in a tri-material assembly. J. Appl. Phys. 89(7), 3685–3694 (2001)CrossRef E. Suhir, Analysis of interfacial thermal stresses in a tri-material assembly. J. Appl. Phys. 89(7), 3685–3694 (2001)CrossRef
45.
Zurück zum Zitat J.-S. Bae, S. Krishnaswamy, Subinterfacial cracks in bi-material systems subjected to mechanical and thermal loading. Eng. Fract. Mech. 68(9), 1081–1094 (2001)CrossRef J.-S. Bae, S. Krishnaswamy, Subinterfacial cracks in bi-material systems subjected to mechanical and thermal loading. Eng. Fract. Mech. 68(9), 1081–1094 (2001)CrossRef
46.
Zurück zum Zitat J.-S. Hsu et al., Photoelastic investigation on thermal stresses in bonded structures, in SPIE Congre`s Experimental Mechanics, vol. 4537 (Beijing, 2002), pp. 170–173, 15–17 Oct 2001 J.-S. Hsu et al., Photoelastic investigation on thermal stresses in bonded structures, in SPIE Congre`s Experimental Mechanics, vol. 4537 (Beijing, 2002), pp. 170–173, 15–17 Oct 2001
47.
Zurück zum Zitat H.B. Fan, M.F. Yuen, E. Suhir, Prediction of delamination in a bi-material system based on free-edge energy evaluation, in 53-rd ECTC Proceedings, (2003), p. 1160 H.B. Fan, M.F. Yuen, E. Suhir, Prediction of delamination in a bi-material system based on free-edge energy evaluation, in 53-rd ECTC Proceedings, (2003), p. 1160
48.
Zurück zum Zitat Y. Wen, C. Basaran, An analytical model for thermal stress analysis of multi-layered microelectronics packaging, in 54-th ECTC, (2004), pp. 369–385 Y. Wen, C. Basaran, An analytical model for thermal stress analysis of multi-layered microelectronics packaging, in 54-th ECTC, (2004), pp. 369–385
49.
Zurück zum Zitat D. Sujan et al., Engineering model for interfacial stresses of a heated bi-material structure with bond material used in electronic packages. IMAPS J. Microelectron. Electron. Packag. 2(2), 132–141 (2005)CrossRef D. Sujan et al., Engineering model for interfacial stresses of a heated bi-material structure with bond material used in electronic packages. IMAPS J. Microelectron. Electron. Packag. 2(2), 132–141 (2005)CrossRef
50.
Zurück zum Zitat E. Suhir, J. Nicolics, Analysis of a bow-free pre-stressed test specimen. ASME JAM 81(11), 114502 (2014) E. Suhir, J. Nicolics, Analysis of a bow-free pre-stressed test specimen. ASME JAM 81(11), 114502 (2014)
51.
Zurück zum Zitat E. Suhir, D. Ingman, Highly compliant bonding material and structure for micro- and opto-electronic applications, in ECTC’06 Proceedings, San Diego (2006) E. Suhir, D. Ingman, Highly compliant bonding material and structure for micro- and opto-electronic applications, in ECTC’06 Proceedings, San Diego (2006)
52.
Zurück zum Zitat E. Suhir, D. Ingman, Highly compliant bonding material and structure for micro- and opto-electronic applications, in Micro and opto-electronic materials and structures: physics, mechanics, design, packaging, reliability, ed. by E. Suhir, C.P. Wong, Y.C. Lee (Springer, Berlin, 2007)CrossRef E. Suhir, D. Ingman, Highly compliant bonding material and structure for micro- and opto-electronic applications, in Micro and opto-electronic materials and structures: physics, mechanics, design, packaging, reliability, ed. by E. Suhir, C.P. Wong, Y.C. Lee (Springer, Berlin, 2007)CrossRef
53.
Zurück zum Zitat E. Suhir, M. Vujosevic, Interfacial stresses in a bi-material assembly with a compliant bonding layer. J. Appl. Phys. D 41, 115504 (2008)CrossRef E. Suhir, M. Vujosevic, Interfacial stresses in a bi-material assembly with a compliant bonding layer. J. Appl. Phys. D 41, 115504 (2008)CrossRef
54.
Zurück zum Zitat E. Suhir, T. Reinikainen, On a paradoxical situation related to lap shear joints: could transverse grooves in the adherends lead to lower interfacial stresses? J. Appl. Phys. D 41, 115505 (2008)CrossRef E. Suhir, T. Reinikainen, On a paradoxical situation related to lap shear joints: could transverse grooves in the adherends lead to lower interfacial stresses? J. Appl. Phys. D 41, 115505 (2008)CrossRef
55.
Zurück zum Zitat E. Suhir, “Global” and “Local” thermal mismatch stresses in an elongated bi-material assembly bonded at the ends, in Structural analysis in microelectronic and fiber-optic systems, symposium proceedings, ed. by E. Suhir (ASME Press, New York, 1995), pp. 101–105 E. Suhir, “Global” and “Local” thermal mismatch stresses in an elongated bi-material assembly bonded at the ends, in Structural analysis in microelectronic and fiber-optic systems, symposium proceedings, ed. by E. Suhir (ASME Press, New York, 1995), pp. 101–105
56.
Zurück zum Zitat E. Suhir, Predicted thermal mismatch stresses in a cylindrical bi-material assembly adhesively bonded at the ends. ASME J. Appl. Mech. 64(1), 15–22 (1997)CrossRef E. Suhir, Predicted thermal mismatch stresses in a cylindrical bi-material assembly adhesively bonded at the ends. ASME J. Appl. Mech. 64(1), 15–22 (1997)CrossRef
57.
Zurück zum Zitat E. Suhir, Thermal stress in a polymer coated optical glass fiber with a low modulus coating at the ends. J. Mater. Res. 16(10), 2996–3004 (2001)CrossRef E. Suhir, Thermal stress in a polymer coated optical glass fiber with a low modulus coating at the ends. J. Mater. Res. 16(10), 2996–3004 (2001)CrossRef
58.
Zurück zum Zitat E. Suhir, Thermal stress in a bi-material assembly adhesively bonded at the ends. J. Appl. Phys. 89(1), 120–129 (2001)CrossRef E. Suhir, Thermal stress in a bi-material assembly adhesively bonded at the ends. J. Appl. Phys. 89(1), 120–129 (2001)CrossRef
59.
Zurück zum Zitat E. Suhir, Thermal stress in an adhesively bonded joint with a low modulus adhesive layer at the ends. J. Appl. Phys. 55, 3657–3661 (2003)CrossRef E. Suhir, Thermal stress in an adhesively bonded joint with a low modulus adhesive layer at the ends. J. Appl. Phys. 55, 3657–3661 (2003)CrossRef
60.
Zurück zum Zitat E. Suhir, Interfacial thermal stresses in a Bi-material assembly with a low-yield-stress bonding layer. Model. Simul. Mater. Sci. Eng. 14, 1421 (2006)CrossRef E. Suhir, Interfacial thermal stresses in a Bi-material assembly with a low-yield-stress bonding layer. Model. Simul. Mater. Sci. Eng. 14, 1421 (2006)CrossRef
61.
Zurück zum Zitat E. Suhir, L. Bechou, B. Levrier, Predicted size of an inelastic zone in a ball-grid-array assembly. ASME J. Appl. Mech. 80, 021007 (2013)CrossRef E. Suhir, L. Bechou, B. Levrier, Predicted size of an inelastic zone in a ball-grid-array assembly. ASME J. Appl. Mech. 80, 021007 (2013)CrossRef
62.
Zurück zum Zitat E. Suhir, A. Shakouri, Assembly bonded at the ends: could thinner and longer legs result in a lower thermal stress in a thermoelectric module (TEM) design? ASME J. Appl. Mech. 79(6), 061010 (2012)CrossRef E. Suhir, A. Shakouri, Assembly bonded at the ends: could thinner and longer legs result in a lower thermal stress in a thermoelectric module (TEM) design? ASME J. Appl. Mech. 79(6), 061010 (2012)CrossRef
63.
Zurück zum Zitat E. Suhir, On a paradoxical situation related to bonded joints: could stiffer mid-portions of a compliant attachment result in lower thermal stress? JSME J. Solid Mech. Mater. Eng. (JSMME) 3(7), 990–997 (2009)CrossRef E. Suhir, On a paradoxical situation related to bonded joints: could stiffer mid-portions of a compliant attachment result in lower thermal stress? JSME J. Solid Mech. Mater. Eng. (JSMME) 3(7), 990–997 (2009)CrossRef
64.
Zurück zum Zitat E. Suhir, Thermal stress in a bi-material assembly with a “piecewise-continuous” bonding layer: theorem of three axial forces. J. Appl. Phys. D 42, 045507 (2009)CrossRef E. Suhir, Thermal stress in a bi-material assembly with a “piecewise-continuous” bonding layer: theorem of three axial forces. J. Appl. Phys. D 42, 045507 (2009)CrossRef
65.
Zurück zum Zitat E. Suhir, Adhesively bonded assemblies with identical nondeformable adherends and inhomogeneous adhesive layer: predicted thermal stresses in the adhesive. J. Reinf. Plast. Compos. 17(14), 1588–1606 (1998) E. Suhir, Adhesively bonded assemblies with identical nondeformable adherends and inhomogeneous adhesive layer: predicted thermal stresses in the adhesive. J. Reinf. Plast. Compos. 17(14), 1588–1606 (1998)
66.
Zurück zum Zitat E. Suhir, Adhesively bonded assemblies with identical nondeformable adherends and “piecewise continuous” adhesive layer: predicted thermal stresses and displacements in the adhesive. Int. J. Solids Struct. 37, 2229–2252 (2000)CrossRef E. Suhir, Adhesively bonded assemblies with identical nondeformable adherends and “piecewise continuous” adhesive layer: predicted thermal stresses and displacements in the adhesive. Int. J. Solids Struct. 37, 2229–2252 (2000)CrossRef
67.
Zurück zum Zitat E. Suhir, R. Ghaffarian, J. Nicolics, Could thermal stresses in a BGA/CGA-system be evaluated from a model intended for a homogeneously bonded assembly? J. Mater. Sci.: Mater. Electron. 27, 570–579 (2016)CrossRef E. Suhir, R. Ghaffarian, J. Nicolics, Could thermal stresses in a BGA/CGA-system be evaluated from a model intended for a homogeneously bonded assembly? J. Mater. Sci.: Mater. Electron. 27, 570–579 (2016)CrossRef
Metadaten
Titel
Predicted stresses in a ball-grid-array (BGA)/column-grid-array (CGA) assembly with an epoxy adhesive at its ends
verfasst von
E. Suhir
R. Ghaffarian
Publikationsdatum
19.01.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 5/2016
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-016-4310-2

Weitere Artikel der Ausgabe 5/2016

Journal of Materials Science: Materials in Electronics 5/2016 Zur Ausgabe

Neuer Inhalt