Skip to main content
Erschienen in:

22.01.2023

Predicting and Assessing Wildfire Evacuation Decision-Making Using Machine Learning: Findings from the 2019 Kincade Fire

verfasst von: Ningzhe Xu, Ruggiero Lovreglio, Erica D. Kuligowski, Thomas J. Cova, Daniel Nilsson, Xilei Zhao

Erschienen in: Fire Technology | Ausgabe 2/2023

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To develop effective wildfire evacuation plans, it is crucial to study evacuation decision-making and identify the factors affecting individuals’ choices. Statistic models (e.g., logistic regression) are widely used in the literature to predict household evacuation decisions, while the potential of machine learning models has not been fully explored. This study compared seven machine learning models with logistic regression to identify which approach is better for predicting a householder’s decision to evacuate. The machine learning models tested include the naïve Bayes classifier, K-nearest neighbors, support vector machine, neural network, classification and regression tree (CART), random forest, and extreme gradient boosting. These models were calibrated using the survey data collected from the 2019 Kincade Fire. The predictive performance of the machine learning models and the logistic regression was compared using F1 score, accuracy, precision, and recall. The results indicate that all the machine learning models performed better than the logistic regression. The CART model has the highest F1 score among all models, with a statistically significant difference from the logistic regression model. This CART model shows that the most important factor affecting the decision to evacuate is pre-fire safety perception. Other important factors include receiving an evacuation order, household risk perception (during the event), and education level.

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Risk perception (and other ‘latent’ variables) are not necessarily an independent variable per se, but instead, a mediator variable when estimating evacuation decisions and movement. In future work, we hope to create a model which is ‘dependent’ only on the factors that can be obtained from any given affected area (e.g., population, environmental, and place-based variables)—to then model threat and risk perceptions and then the evacuation decision.
 
Literatur
3.
Zurück zum Zitat Benight C, Gruntfest E, Sparks K (2004) Colorado wildfires 2002. Quick response rep. 167. Natural Hazards Center, University of Colorado Boulder. Benight C, Gruntfest E, Sparks K (2004) Colorado wildfires 2002. Quick response rep. 167. Natural Hazards Center, University of Colorado Boulder.
12.
Zurück zum Zitat Chinchor N (1992) Muc-4 evaluation metrics in proc. of the fourth message understanding conference. pp. 22–29 Chinchor N (1992) Muc-4 evaluation metrics in proc. of the fourth message understanding conference. pp. 22–29
26.
Zurück zum Zitat Lamounier E, Soares A, Andrade A, et al (2002) A virtual prosthesis control based on neural networks for emg pattern classification. In: Proceedings of the Artificial Intelligence and Soft Computing, Citeseer Lamounier E, Soares A, Andrade A, et al (2002) A virtual prosthesis control based on neural networks for emg pattern classification. In: Proceedings of the Artificial Intelligence and Soft Computing, Citeseer
27.
Zurück zum Zitat Lewis RJ (2000) An introduction to classification and regression tree (cart) analysis. In: Annual meeting of the society for academic emergency medicine in San Francisco, California, Citeseer Lewis RJ (2000) An introduction to classification and regression tree (cart) analysis. In: Annual meeting of the society for academic emergency medicine in San Francisco, California, Citeseer
29.
Zurück zum Zitat Liaw A, Wiener M et al (2002) Classification and regression by randomforest. R News 2(3):18–22 Liaw A, Wiener M et al (2002) Classification and regression by randomforest. R News 2(3):18–22
37.
Zurück zum Zitat McCaffrey SM, Winter G (2011) Understanding homeowner preparation and intended actions when threatened by a wildfire. Proceedings of the Second Conference on the Human Dimensions of Wildland Fire McCaffrey SM, Winter G (2011) Understanding homeowner preparation and intended actions when threatened by a wildfire. Proceedings of the Second Conference on the Human Dimensions of Wildland Fire
38.
Zurück zum Zitat McCallum A, Nigam K, et al (1998) A comparison of event models for naive bayes text classification. In: AAAI-98 workshop on learning for text categorization, Citeseer, pp 41–48 McCallum A, Nigam K, et al (1998) A comparison of event models for naive bayes text classification. In: AAAI-98 workshop on learning for text categorization, Citeseer, pp 41–48
39.
Zurück zum Zitat McLennan J (2014) Capturing community members’ bushfire experiences: Interviews with residents following the 12 January 2014 Parkerville (WA) fire McLennan J (2014) Capturing community members’ bushfire experiences: Interviews with residents following the 12 January 2014 Parkerville (WA) fire
40.
Zurück zum Zitat McLennan J, Elliott G, Omodei M (2011) Issues in community bushfire safety: analyses of interviews conducted by the 2009 Victorian bushfires research task force. Bundoora, AU McLennan J, Elliott G, Omodei M (2011) Issues in community bushfire safety: analyses of interviews conducted by the 2009 Victorian bushfires research task force. Bundoora, AU
45.
Zurück zum Zitat Meyer D, Dimitriadou E, Hornik K, et al (2019) Package ‘e1071’. The R Journal Meyer D, Dimitriadou E, Hornik K, et al (2019) Package ‘e1071’. The R Journal
50.
Zurück zum Zitat Ng A, Jordan M (2001) On discriminative vs. generative classifiers: a comparison of logistic regression and naive Bayes. Advances in Neural Information Processing Systems 14 Ng A, Jordan M (2001) On discriminative vs. generative classifiers: a comparison of logistic regression and naive Bayes. Advances in Neural Information Processing Systems 14
54.
Zurück zum Zitat Ripley B, Ripley MB (2016) Package ‘tree’. Classification and Regression Trees Version. pp. 1–0 Ripley B, Ripley MB (2016) Package ‘tree’. Classification and Regression Trees Version. pp. 1–0
55.
Zurück zum Zitat Ripley B, Venables W, Ripley MB (2015) Package ‘class’. The Comprehensive R Archive Network. p 11 Ripley B, Venables W, Ripley MB (2015) Package ‘class’. The Comprehensive R Archive Network. p 11
56.
Zurück zum Zitat Ripley B, Venables W, Ripley M (2016) Package ‘nnet’r package version, 7:3–12 Ripley B, Venables W, Ripley M (2016) Package ‘nnet’r package version, 7:3–12
57.
Zurück zum Zitat Rudin C (2019) Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat Mach Intell 1(5):206–215CrossRef Rudin C (2019) Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat Mach Intell 1(5):206–215CrossRef
60.
Zurück zum Zitat Song X, Zhang Q, Sekimoto Y, et al (2013) Modeling and probabilistic reasoning of population evacuation during large-scale disaster. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 1231–1239, https://doi.org/10.1145/2487575.2488189 Song X, Zhang Q, Sekimoto Y, et al (2013) Modeling and probabilistic reasoning of population evacuation during large-scale disaster. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 1231–1239, https://​doi.​org/​10.​1145/​2487575.​2488189
61.
Zurück zum Zitat Song YY, Ying L (2015) Decision tree methods: applications for classification and prediction. Shanghai Arch Psychiatr 27(2):130 Song YY, Ying L (2015) Decision tree methods: applications for classification and prediction. Shanghai Arch Psychiatr 27(2):130
65.
Zurück zum Zitat Sutton RS, Barto AG (2018) Reinforcement learning: an introduction. MIT press, CambridgeMATH Sutton RS, Barto AG (2018) Reinforcement learning: an introduction. MIT press, CambridgeMATH
69.
Zurück zum Zitat Whittaker J, Handmer J (2010) Review of key bushfire research findings. Report Number WIT 3007:0041 Whittaker J, Handmer J (2010) Review of key bushfire research findings. Report Number WIT 3007:0041
70.
Zurück zum Zitat Whittaker J, Eriksen C, Haynes K (2015) More men die in bushfires: how gender affects how we plan and respond. The Conversation Whittaker J, Eriksen C, Haynes K (2015) More men die in bushfires: how gender affects how we plan and respond. The Conversation
72.
Zurück zum Zitat Wong SD (2020) Compliance, congestion, and social equity: tackling critical evacuation challenges through the sharing economy, joint choice modeling, and regret minimization. University of California, Berkeley Wong SD (2020) Compliance, congestion, and social equity: tackling critical evacuation challenges through the sharing economy, joint choice modeling, and regret minimization. University of California, Berkeley
Metadaten
Titel
Predicting and Assessing Wildfire Evacuation Decision-Making Using Machine Learning: Findings from the 2019 Kincade Fire
verfasst von
Ningzhe Xu
Ruggiero Lovreglio
Erica D. Kuligowski
Thomas J. Cova
Daniel Nilsson
Xilei Zhao
Publikationsdatum
22.01.2023
Verlag
Springer US
Erschienen in
Fire Technology / Ausgabe 2/2023
Print ISSN: 0015-2684
Elektronische ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-023-01363-1

Weitere Artikel der Ausgabe 2/2023

Fire Technology 2/2023 Zur Ausgabe