Skip to main content

2024 | OriginalPaper | Buchkapitel

Predicting Content Popularity on Social Media: An Analytical Approach Using Regression Modeling

verfasst von : Heba Al-Mamouri, Wadhah R. Baiee

Erschienen in: Proceedings of Third International Conference on Computing and Communication Networks

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The significant emergence of the "popularity" phenomena has been fueled by the quick rise of influential social media platforms like Facebook and YouTube as well as the pervasive integration of electronic gadgets into daily life. This popularity essence essentially entails the rapid accrual of substantial views, frequently reaching into the thousands or millions, across videos, posts, and various content types, serving as a tangible reflection of user inclinations. The task of predicting content popularity is a formidable one due to its reliance on an array of factors, encompassing visual and social attributes such as views, likes, comments, as well as variables like publication time, publisher identity, duration, and content specifics. This manuscript presents a comprehensive exploration of this subject matter, delving into recent applications of machine learning techniques for the prediction of content popularity. It underscores the significance of judiciously selecting predictive attributes and appropriately configuring data models to attain accurate prognostications. The research work encompasses an array of regression models harnessed in machine learning, including decision trees, random forests, support vector machines, ridge regression, and both linear and non-linear regression. Diverse classes of attributes employed for popularity prediction are delineated, encompassing text-based features, visual characteristics, metadata with a social dimension, and the fusion of multiple attributes. The paper further outlines the prevalent assessment metrics employed for evaluating regression models, encompassing mean absolute error, mean squared error, and root mean squared error. Also, it includes a table that summarizes the references, models, content types, features, and results of various studies related to popularity prediction.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
10.
Zurück zum Zitat Ling, C., Blackburn, J., De Cristofaro, E., Stringhini, G.: Slapping cats, bopping heads, and oreo shakes: understanding indicators of Virality in TikTok Short Videos. In: ACM International Conference Proceeding Series, pp. 164–173. (2022) https://doi.org/10.1145/3501247.3531551. Ling, C., Blackburn, J., De Cristofaro, E., Stringhini, G.: Slapping cats, bopping heads, and oreo shakes: understanding indicators of Virality in TikTok Short Videos. In: ACM International Conference Proceeding Series, pp. 164–173. (2022) https://​doi.​org/​10.​1145/​3501247.​3531551.
11.
Zurück zum Zitat Ng, L.H.X., Tan, J.Y.H., Tan, D.J.H., Lee, R.K.W.: Will you dance to the challenge?: Predicting user participation of TikTok challenges. In Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2021. pp. 356–360 (2021) https://doi.org/10.1145/3487351.3488276. Ng, L.H.X., Tan, J.Y.H., Tan, D.J.H., Lee, R.K.W.: Will you dance to the challenge?: Predicting user participation of TikTok challenges. In Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2021. pp. 356–360 (2021) https://​doi.​org/​10.​1145/​3487351.​3488276.
13.
Zurück zum Zitat Hamouda, A.E.A.: Sentiment analyzer for arabic comments system, 4(3), pp. 99–103 (2013). Hamouda, A.E.A.: Sentiment analyzer for arabic comments system, 4(3), pp. 99–103 (2013).
20.
Zurück zum Zitat Zohourian, A., Sajedi, H., Yavary, A.: A r c h i v e o f S I D Popularity Prediction of Images and Videos on Instagram. Available: www.SID.ir. Zohourian, A., Sajedi, H., Yavary, A.: A r c h i v e o f S I D Popularity Prediction of Images and Videos on Instagram. Available: www.​SID.​ir.
21.
Zurück zum Zitat Purba, K.R., Asirvatham, D., Murugesan, R.K.: Analysis and prediction of instagram users popularity using regression techniques based on metadata, media and hashtags analysis. Eng. Lett. 28(3), 170–177 (2020). Purba, K.R., Asirvatham, D., Murugesan, R.K.: Analysis and prediction of instagram users popularity using regression techniques based on metadata, media and hashtags analysis. Eng. Lett. 28(3), 170–177 (2020).
24.
Zurück zum Zitat Brownlee, J.: Master Machine Learning Algorithms. In: Suparyanto dan Rosad 2015, 5(3), pp. 1–23 (2016). Brownlee, J.: Master Machine Learning Algorithms. In: Suparyanto dan Rosad 2015, 5(3), pp. 1–23 (2016).
Metadaten
Titel
Predicting Content Popularity on Social Media: An Analytical Approach Using Regression Modeling
verfasst von
Heba Al-Mamouri
Wadhah R. Baiee
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-0892-5_51