Skip to main content

2020 | OriginalPaper | Buchkapitel

Predicting Customer Churn for Insurance Data

verfasst von : Michael Scriney, Dongyun Nie, Mark Roantree

Erschienen in: Big Data Analytics and Knowledge Discovery

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Most organisations employ customer relationship management systems to provide a strategic advantage over their competitors. One aspect of this is applying a customer lifetime value to each client which effectively forms a fine-grained ranking of every customer in their database. This is used to focus marketing and sales budgets and, in turn, generate a more optimised and targeted spend. The problem is that it requires a full customer history for every client and this rarely exists. In effect, there is a large gap between the available information in application databases and the types of datasets required to calculate customer lifetime values. This gap prevents any meaningful calculation of customer lifetime values. In this research, we present an approach to generating some of the missing parameters for CLV calculations. This requires a specialised form of data warehouse architecture and a flexible prediction and validation methodology for imputing missing data.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Günther, C.C., et al.: Modelling and predicting customer churn from an insurance company. Scand. Actuar. J. 2014(1), 58–71 (2014)MathSciNetCrossRef Günther, C.C., et al.: Modelling and predicting customer churn from an insurance company. Scand. Actuar. J. 2014(1), 58–71 (2014)MathSciNetCrossRef
2.
Zurück zum Zitat Berger, P.D., Nasr, N.I.: Customer lifetime value: marketing models and applications. J. Interact. Market. 12(1), 17–30 (1998)CrossRef Berger, P.D., Nasr, N.I.: Customer lifetime value: marketing models and applications. J. Interact. Market. 12(1), 17–30 (1998)CrossRef
4.
Zurück zum Zitat Di Benedetto, C.A., Kim, K.H.: Customer equity and value management of global brands: bridging theory and practice from financial and marketing perspectives. J. Bus. Res. 69(9), 3721–3724 (2016)CrossRef Di Benedetto, C.A., Kim, K.H.: Customer equity and value management of global brands: bridging theory and practice from financial and marketing perspectives. J. Bus. Res. 69(9), 3721–3724 (2016)CrossRef
5.
Zurück zum Zitat Gupta, S.: Modeling customer lifetime value. J. Serv. Res. 9(2), 139–155 (2006)CrossRef Gupta, S.: Modeling customer lifetime value. J. Serv. Res. 9(2), 139–155 (2006)CrossRef
6.
Zurück zum Zitat Hu, X., Yang, Y., Chen, L., Zhu, S.: Research on a customer churn combination prediction model based on decision tree and neural network. In: 5th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA), pp. 129–132 (2020) Hu, X., Yang, Y., Chen, L., Zhu, S.: Research on a customer churn combination prediction model based on decision tree and neural network. In: 5th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA), pp. 129–132 (2020)
7.
Zurück zum Zitat Lemmens, A., Croux, C.: Bagging and boosting classification trees to predict churn. J. Market. Res. 43(2), 276–286 (2006)CrossRef Lemmens, A., Croux, C.: Bagging and boosting classification trees to predict churn. J. Market. Res. 43(2), 276–286 (2006)CrossRef
8.
Zurück zum Zitat Ling, R., Yen, D.C.: Customer relationship management: an analysis framework and implementation strategies. J. Comput. Inf. Syst. 41(3), 82–97 (2001) Ling, R., Yen, D.C.: Customer relationship management: an analysis framework and implementation strategies. J. Comput. Inf. Syst. 41(3), 82–97 (2001)
9.
Zurück zum Zitat Metsis, V., Androutsopoulos, I., Paliouras, G.: Spam filtering with naive Bayes-which naive Bayes? In: CEAS, Mountain View, CA, vol. 17, pp. 28–69 (2006) Metsis, V., Androutsopoulos, I., Paliouras, G.: Spam filtering with naive Bayes-which naive Bayes? In: CEAS, Mountain View, CA, vol. 17, pp. 28–69 (2006)
11.
Zurück zum Zitat Reinartz, W.J., Kumar, V.: On the profitability of long-life customers in a noncontractual setting: an empirical investigation and implications for marketing. J. Market. 64(4), 17–35 (2000)CrossRef Reinartz, W.J., Kumar, V.: On the profitability of long-life customers in a noncontractual setting: an empirical investigation and implications for marketing. J. Market. 64(4), 17–35 (2000)CrossRef
12.
Zurück zum Zitat Risselada, H., Verhoef, P.C., Bijmolt, T.H.: Staying power of churn prediction models. J. Interact. Market. 24(3), 198–208 (2010)CrossRef Risselada, H., Verhoef, P.C., Bijmolt, T.H.: Staying power of churn prediction models. J. Interact. Market. 24(3), 198–208 (2010)CrossRef
13.
Zurück zum Zitat Roantree, M., Liu, J.: A heuristic approach to selecting views for materialization. Softw. Pract. Exp. 44(10), 1157–1179 (2014)CrossRef Roantree, M., Liu, J.: A heuristic approach to selecting views for materialization. Softw. Pract. Exp. 44(10), 1157–1179 (2014)CrossRef
14.
Zurück zum Zitat Scriney, M., McCarthy, S., McCarren, A., Cappellari, P., Roantree, M.: Automating data mart construction from semi-structured data sources. Comput. J. 62(3), 394–413 (2019)CrossRef Scriney, M., McCarthy, S., McCarren, A., Cappellari, P., Roantree, M.: Automating data mart construction from semi-structured data sources. Comput. J. 62(3), 394–413 (2019)CrossRef
15.
Zurück zum Zitat Sohrabi, B., Khanlari, A.: Customer lifetime value (CLV) measurement based on RFM model. Iran. Account. Auditing Rev. 14(47), 7–20 (2007) Sohrabi, B., Khanlari, A.: Customer lifetime value (CLV) measurement based on RFM model. Iran. Account. Auditing Rev. 14(47), 7–20 (2007)
16.
Zurück zum Zitat Sundarkumar, G.G., Ravi, V., Siddeshwar, V.: One-class support vector machine based undersampling: application to churn prediction and insurance fraud detection. In: 2015 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), pp. 1–7. IEEE (2015) Sundarkumar, G.G., Ravi, V., Siddeshwar, V.: One-class support vector machine based undersampling: application to churn prediction and insurance fraud detection. In: 2015 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), pp. 1–7. IEEE (2015)
17.
Zurück zum Zitat Tamaddoni, A., Stakhovych, S., Ewing, M.: The impact of personalised incentives on the profitability of customer retention campaigns. J. Market. Manage. 33(5), 1–21 (2017)CrossRef Tamaddoni, A., Stakhovych, S., Ewing, M.: The impact of personalised incentives on the profitability of customer retention campaigns. J. Market. Manage. 33(5), 1–21 (2017)CrossRef
18.
Zurück zum Zitat Ullah, I., Raza, B., Malik, A.K., Imran, M., Islam, S.U., Kim, S.W.: A churn prediction model using random forest: analysis of machine learning techniques for churn prediction and factor identification in telecom sector. IEEE Access 7, 60134–60149 (2019)CrossRef Ullah, I., Raza, B., Malik, A.K., Imran, M., Islam, S.U., Kim, S.W.: A churn prediction model using random forest: analysis of machine learning techniques for churn prediction and factor identification in telecom sector. IEEE Access 7, 60134–60149 (2019)CrossRef
19.
Zurück zum Zitat Zhang, R., Li, W., Tan, W., Mo, T.: Deep and shallow model for insurance churn prediction service. In: 2017 IEEE International Conference on Services Computing (SCC), pp. 346–353. IEEE (2017) Zhang, R., Li, W., Tan, W., Mo, T.: Deep and shallow model for insurance churn prediction service. In: 2017 IEEE International Conference on Services Computing (SCC), pp. 346–353. IEEE (2017)
Metadaten
Titel
Predicting Customer Churn for Insurance Data
verfasst von
Michael Scriney
Dongyun Nie
Mark Roantree
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-59065-9_21