Skip to main content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2021 | OriginalPaper | Buchkapitel

Predicting Customer Spent on Black Friday

verfasst von : Ashish Arora, Bhupesh Bhatt, Divyanshu Bist, Rachna Jain, Preeti Nagrath

Erschienen in: Proceedings of Second International Conference on Computing, Communications, and Cyber-Security

Verlag: Springer Singapore

share
TEILEN

Abstract

The paper provides insights into the expenditures of consumers on a Black Friday. On the day of Black Friday, most of the retail shops are hugely crowded, therefore it becomes very difficult to control the crowd and to have proper stocks of a variety of products. This study analyzes the shopping pattern based on various categories like age, occupation, marital status, city, etc. This study centers around the field of forecast models to build up an exact and efficient calculation to dissect the client spending before and yield the future going through of the clients with the same highlights. In this study, a forest regressor is used to predict the expenditure of consumers. Further, this study talks about the information prehandling and perception procedures utilized to achieve the ideal outcomes. With the help of this study, any retail store participating in Black Friday can improve its efficiency and prepare himself to handle consumers.

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literatur
2.
Zurück zum Zitat Smith O, Raymen T (2017) Shopping with violence: black friday sales in the British context. J Consum Culture 17(3): 677–694 Smith O, Raymen T (2017) Shopping with violence: black friday sales in the British context. J Consum Culture 17(3): 677–694
3.
Zurück zum Zitat Kalra S et al (2020) Analysing and predicting the purchases done on the day of black friday. In: 2020 international conference on emerging trends in information technology and engineering (ic-ETITE). IEEE, New York Kalra S et al (2020) Analysing and predicting the purchases done on the day of black friday. In: 2020 international conference on emerging trends in information technology and engineering (ic-ETITE). IEEE, New York
4.
Zurück zum Zitat Milavec B (2012) An analysis of consumer misbehavior on Black Friday. Diss. University of Delaware Milavec B (2012) An analysis of consumer misbehavior on Black Friday. Diss. University of Delaware
5.
Zurück zum Zitat Majumder G (2019) Analysis and prediction of consumer behaviour on black friday sales. J Gujarat Res Soc 21(10s):235–242 Majumder G (2019) Analysis and prediction of consumer behaviour on black friday sales. J Gujarat Res Soc 21(10s):235–242
6.
Zurück zum Zitat Shopper Trak Reports Positive Response to Early Holiday Promotions Boosts Projections or 2010 Holiday Season. Shopper Trak, Press Release (2010). Shopper Trak Reports Positive Response to Early Holiday Promotions Boosts Projections or 2010 Holiday Season. Shopper Trak, Press Release (2010).
7.
Zurück zum Zitat Holiday Watch (2010) Media Guide 2006 Holiday Facts and Figure International Council of Shopping Centers Holiday Watch (2010) Media Guide 2006 Holiday Facts and Figure International Council of Shopping Centers
8.
Zurück zum Zitat Wu C-SM, Patil P, Gunaseelan S (2018) Comparison of different machine learning algorithms for multiple regression on black friday sales data. In: 2018 IEEE 9th international conference on software engineering and service science (ICSESS). IEEE, New York Wu C-SM, Patil P, Gunaseelan S (2018) Comparison of different machine learning algorithms for multiple regression on black friday sales data. In: 2018 IEEE 9th international conference on software engineering and service science (ICSESS). IEEE, New York
9.
Zurück zum Zitat Trung ND et al, Black friday sale prediction via extreme gradient boosted trees Trung ND et al, Black friday sale prediction via extreme gradient boosted trees
10.
Zurück zum Zitat Thomas JB, Peters C (2011) An exploratory investigation of black friday consumption rituals. Int J Retail Distrib Manage Thomas JB, Peters C (2011) An exploratory investigation of black friday consumption rituals. Int J Retail Distrib Manage
11.
Zurück zum Zitat Maharjan M (2019) Analysis of consumer data on black friday sales using Apriori algorithm. SCITECH Nepal 14(1):17–21 Maharjan M (2019) Analysis of consumer data on black friday sales using Apriori algorithm. SCITECH Nepal 14(1):17–21
12.
Zurück zum Zitat Tashakkori A, Teddlie C, Teddlie CB (1998) Mixed methodology: combining qualitative and quantitative approaches, vol 46. Sage Tashakkori A, Teddlie C, Teddlie CB (1998) Mixed methodology: combining qualitative and quantitative approaches, vol 46. Sage
13.
Zurück zum Zitat Ma X (2017) Linked geoscience data in practice: where W3C standards meet domain knowledge, data visualization and OGC standards. Earth Sci Inform 10(4):429 Ma X (2017) Linked geoscience data in practice: where W3C standards meet domain knowledge, data visualization and OGC standards. Earth Sci Inform 10(4):429
14.
Zurück zum Zitat Badie B, Berg-Schlosser D, Morlino L (eds) International encyclopedia of political science, vol 1. Sage Badie B, Berg-Schlosser D, Morlino L (eds) International encyclopedia of political science, vol 1. Sage
15.
Zurück zum Zitat AI-Malaise AS (2013) Implementation of Apriori algorithm to analze organization data: building decision support system. Int J Comput Appl 66(9):27 AI-Malaise AS (2013) Implementation of Apriori algorithm to analze organization data: building decision support system. Int J Comput Appl 66(9):27
16.
Zurück zum Zitat Ganapathi A (2009) Predicting and optimizing system utilization and performance via statistical machine learning. Diss. UC Berkeley Ganapathi A (2009) Predicting and optimizing system utilization and performance via statistical machine learning. Diss. UC Berkeley
Metadaten
Titel
Predicting Customer Spent on Black Friday
verfasst von
Ashish Arora
Bhupesh Bhatt
Divyanshu Bist
Rachna Jain
Preeti Nagrath
Copyright-Jahr
2021
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-16-0733-2_13