Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

07.07.2017 | Original Article | Ausgabe 4/2019

Neural Computing and Applications 4/2019

Predicting groutability of granular soils using adaptive neuro-fuzzy inference system

Zeitschrift:
Neural Computing and Applications > Ausgabe 4/2019
Autoren:
Erhan Tekin, Sami Oguzhan Akbas
Wichtige Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1007/​s00521-017-3140-3) contains supplementary material, which is available to authorized users.

Abstract

In this paper, the applicability of adaptive neuro-fuzzy inference system (ANFIS) for the prediction of groutability of granular soils with cement-based grouts is investigated. A database of 117 grouting case records with relevant geotechnical information was used to develop the ANFIS model. The proposed model uses the water–cement ratio of the grout, the relative density and fines content of the soil, the grouting pressure, and the ratio between the particle size of the soil corresponding to 15% finer and that of grout corresponding to 85% finer as input parameters. The accuracy of the proposed ANFIS model in terms of the corresponding coefficient of correlation (R) and root mean square error (RMSE) values is found to be quite satisfactory. Furthermore, a comparative analysis with existing groutability prediction methods indicates that the ANFIS model demonstrates superior performance.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Zusatzmaterial
Supplementary material 1 (EXE 883 kb)
521_2017_3140_MOESM1_ESM.exe
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 4/2019

Neural Computing and Applications 4/2019 Zur Ausgabe

Premium Partner

    Bildnachweise