Skip to main content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

Erschienen in:
Buchtitelbild

2021 | OriginalPaper | Buchkapitel

Predicting Lane Changes by Identifying Sequence Patterns of Implicit Communication Cues

verfasst von : Ann-Christin Hensch, Matthias Beggiato, Josef F. Krems

Erschienen in: Advances in Human Aspects of Transportation

Verlag: Springer International Publishing

share
TEILEN

Abstract

Lane changes (LCs) are highly complex, therefore the announcement and anticipation at an early stage of these maneuvers is important for traffic safety. Since manual drivers mainly apply implicit driving cues, automated vehicles (AVs) need to be able to detect and apply these cues to enhance the acceptance of AVs and therefore exploit the benefits of automation. The current study aimed at identifying typical communication cues and prototypical sequence patterns that announce prospective LCs at an early stage. In total, N = 298 LCs were annotated in video recordings of a real-world driving data set. The analysis revealed the turn indicator and the vehicles’ lateral movement towards the target lane as the most frequently and initially applied communication cues to announce LCs. The identified driving cues could be used by AVs to announce and anticipate prospective LCs at an early stage and therefore enhance traffic safety and efficiency.
Literatur
1.
Zurück zum Zitat Beggiato, M., Krems, J.F.: Sequence analysis of glance patterns to predict lane changes on urban arterial roads. In: 6. Tagung Fahrerassistenz - Der Weg zum automatischen Fahren 6th Conference on Driving Assistance Systems – The Way to Automated Driving, Munich, Germany (2013) Beggiato, M., Krems, J.F.: Sequence analysis of glance patterns to predict lane changes on urban arterial roads. In: 6. Tagung Fahrerassistenz - Der Weg zum automatischen Fahren 6th Conference on Driving Assistance Systems – The Way to Automated Driving, Munich, Germany (2013)
4.
Zurück zum Zitat Beggiato, M., et al.: Lane change prediction: from driver characteristics, manoeuvre types and glance behaviour to a real-time prediction algorithm. In: Bengler, K., Drüke, J., Hoffmann, S., Manstetten, D., Neukum, A. (eds.) UR:BAN Human Factors in Traffic. ATZ/MTZ- Fachbuch, pp. 205–221. Springer, Wiesbaden (2018). https://​doi.​org/​10.​1007/​978-3-658-15418-9_​11 Beggiato, M., et al.: Lane change prediction: from driver characteristics, manoeuvre types and glance behaviour to a real-time prediction algorithm. In: Bengler, K., Drüke, J., Hoffmann, S., Manstetten, D., Neukum, A. (eds.) UR:BAN Human Factors in Traffic. ATZ/MTZ- Fachbuch, pp. 205–221. Springer, Wiesbaden (2018). https://​doi.​org/​10.​1007/​978-3-658-15418-9_​11
Metadaten
Titel
Predicting Lane Changes by Identifying Sequence Patterns of Implicit Communication Cues
verfasst von
Ann-Christin Hensch
Matthias Beggiato
Josef F. Krems
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-80012-3_1