Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

14.09.2019 | Ausgabe 1/2020

Wireless Personal Communications 1/2020

Predicting Spam Messages Using Back Propagation Neural Network

Zeitschrift:
Wireless Personal Communications > Ausgabe 1/2020
Autoren:
Ankit Kumar Jain, Diksha Goel, Sanjli Agarwal, Yukta Singh, Gaurav Bajaj
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

With the increase in popularity of smartphones, text-based communication has also gained popularity. Availability of messaging services at low cost has resulted into the increase in spam messages. This increase in number of spam messages has become an important issue these days. Many mobile applications are developed to detect spam messages in mobile phones but still, there is a lack of a complete solution. This paper presents an approach for the detection of spam messages. We have identified an effective feature set for text messages which classify the messages into spam or ham with high accuracy. The feature selection procedure is implemented on normalized text messages to obtain a feature vector for each message. The feature vector obtained is tested on a set of machine learning algorithms to observe their efficiency. This paper also presents a comparative analysis of different algorithms on which the features are implemented. In addition, it presents the contribution of different features in spam detection. After implementation and as per the set of features selected, Artificial Neural Network Algorithm using Back Propagation technique works in the most efficient manner.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2020

Wireless Personal Communications 1/2020 Zur Ausgabe